
Encrypted updates

Contents1

Threat model 22

Objectives . 23

Properties . 24

Threats . 25

Mitigations . 36

Risks and impacts . 37

the private key for signing is leaked 38

the private key for signing is lost 39

the symmetric key for encryption/decryption is leaked 410

the symmetric key for encryption/decryption is lost 411

Key infrastructure 412

How keys can be stored on devices . 513

How keys can be deployed to devices 514

When new keys should be generated 515

How the build pipeline can fetch the keys 516

How multiple keys can be used for key rotations 517

How to handle the leak of a key to the public and how that impacts18

future updates . 519

Encryption Parameters 620

The encryption of the update file makes accessing its contents more difficult for21

bystanders, but doesn’t necessarily protect from more resourceful attackers that22

can extract the decryption key from the user-owned device.23

The bundle encryption is done using the loop device with standard/proven kernel24

facilities for de/encryption (e.g. dm-crypt/LUKS). This allows the mechanism25

to be system agnostic (not tied to OSTree bundles), and can be used to ship up-26

dates to multiple components at once by including multiple files in the bundle.27

dm-crypt is the Linux kernel module which provides transparent encryption of28

block devices using the kernel crypto API, see dm-crypt1.29

LUKS is the standard for Linux hard disk encryption. It provides secure man-30

agement of multiple user passwords, see LUKS wiki2.31

The authenticity of the update is checked by verifying the OSTree signature as32

dm-crypt utilises symmetric cryptography which can’t be used to ensure trust33

as the on-device key can be used to encrypt malicious files, not just decrypt34

them.35

1https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt
2https://gitlab.com/cryptsetup/cryptsetup/-/wikis/home

2

https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/home
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/home

Threat model36

Objectives37

1. end-users can download updates from the product website and apply them38

offline to the device via a USB key or SD card39

2. only official updates should be accepted by the device40

3. the contents of the updates should not be easily extracted, increasing41

the effort required for an attacker and providing some protection for the42

business’ intellectual property43

Properties44

1. integrity: the device should only accept updates which have not been45

altered46

2. authenticity: the device should only accept updates coming from the47

producer48

3. confidentiality: the contents of the updates should not be disclosed49

Threats50

1. Alice owns a device and wants to make it run her own software51

2. Emily owns a device and Alice wants to have her own software on Emily’s52

device53

3. Vincent develops a competing product and wants to gain insights into the54

inner workings of the device55

Mitigations56

1. integrity: the update is checksummed, causing alteration to be detectable57

2. authenticity: the update is signed with a private key by the vendor58

and the device only accepts updates with a signature matching one of the59

public keys in its trusted set60

3. confidentiality: the update is encrypted with a symmetric key (due to61

technology limitations public key decryption is not available)62

Risks and impacts63

the private key for signing is leaked64

Impact65

• the private key allows Alice to generate updates that can be accepted by66

all devices67

Mitigations68

3

• the private key is only needed on the vendor infrastructure producing the69

updates70

• the chance of leaks is minimized by securing the infrastructure and ensur-71

ing that access to the key is restricted as much as possible72

• public keys for the leaked private keys should be revoked73

• multiple public keys should be trusted on the device, so if one is revoked74

updates can be rolled out using a different key75

• keys should not be re-used across products to compartimentalize them76

against leaks77

the private key for signing is lost78

Impact79

• updates can’t be generated if no private key matching the on-device public80

ones is available81

Mitigations82

• if multiple public keys are trusted on the device, the private key used can83

be rotated if another private key is still available84

• backup private keys should be stored securely in different locations85

the symmetric key for encryption/decryption is leaked86

Impact87

• Alice has access to all symmetric keys stored in bundles encrypted with88

the leaked key89

• the symmetric key allows Alice to generate updates that can be decrypted90

by devices91

Mitigations92

• due to its symmetric nature, the secret key has to be available on both93

the vendor infrastructure and on each device94

• secure enclave technologies can help use the symmetric key for decryption95

without exposing the key in any way96

• if secure enclave is not available the key has to be stored on the device97

and can be extracted via physical access98

• if the key can’t be provisioned in the factory the key has to be provisioned99

via unencrypted updates, from which an attacker can extract the keys100

without physical access to the device101

• multiple decryption keys must be provisioned, to be able to rotate them102

in case of leaks103

4

the symmetric key for encryption/decryption is lost104

Impact105

• encrypted updates can’t be generated for devices only using this symmetric106

key107

Mitigations108

• given that the key has to be available on each device, the chance of losing109

the encryption/decryption key is small110

• if multiple decryption keys are provisioned on the device, the encryption111

key can be rotated112

• if all keys are lost or corrupted on the device, it will not be possible to113

decrypt bundles on USB/SDCard and so to update the device using this114

method.115

Key infrastructure116

LUKS is able to manage up to 8 key slots, any of the 8 different keys can be117

used to decrypt the update bundle. This can allow a bundle to be read using a118

main key or fallback key(s), and/or by different devices with a different subsets119

of the used keys.120

On the device itself, Apertis Update Manager is in charge of decrypting the121

bundle and it will try as many keys as needed to unlock the bundle, there’s no122

limitation on the number of keys which can be stored.123

Random keys for bundle encryption can be generated using:124

head -c128 /dev/random | base64 --wrap=0125

How keys can be stored on devices126

• Keys can be stored in separated files, located in read-only part of the127

filesystem: /usr/share/apertis-update-manager/128

• In future versions, keys may be stored using the secure-boot-verified key129

storage system130

How keys can be deployed to devices131

• Keys stored in the filesystem can be deployed by the normal update mech-132

anism133

When new keys should be generated134

New keys should be generated:135

• for new products136

5

• when a key has been compromised137

How the build pipeline can fetch the keys138

• As for the signing key, the key(s) used to encrypt the static delta bundle139

should be passed to the encryption script GitLab CI/CD variable(s)140

How multiple keys can be used for key rotations141

• When the keys are stored on the filesystem, key rotation will not provide142

any benefit as the leak of one key implies the leak of the others143

• When the keys will be stored using the secure-boot-verified key storage144

system, the encrypted updates will be generated wih non-leaked keys and145

will remove the leaked keys while adding the new keys to the secure-boot-146

verified key storage system, so the number of available keys remain the147

same148

How to handle the leak of a key to the public and how that149

impacts future updates150

• If the keys are stored on the filesystem, the leak of one key implies the151

leak of the others152

• If the keys are stored using the secure-boot-verified key storage system,153

the next update should be signed with a key that hasn’t been leaked and154

the update should revoke the leaked key155

Encryption Parameters156

In a classical usage, the encryption is setup through a benchmark on the157

computer/board which will use it, allowing a good balance between password158

strength and unlocking time. This could end-up by encrypted file not usable159

due to out of memory error or slow unlocking time.160

LUKS key strength is managed through 3 cryptsetup parameters: --pbkdf-161

memory, --pbkdf-force-iterations and --pbkdf-parallel.162

--pbkdf-parallel configures the maximun number of threads used to unlock the163

encrypted file. This is automatically decreased on hardware devices that have164

only one of just a few cores.165

As encrypted update file is created during image build on computer with more166

CPU power and memory, and that it is important to find a balance between pass-167

word strength and usability, the --pbkdf-memory and --pbkdf-force-iterations168

should be forced to appropriate values for the target board.169

6

	Threat model
	Objectives
	Properties
	Threats
	Mitigations
	Risks and impacts
	the private key for signing is leaked
	the private key for signing is lost
	the symmetric key for encryption/decryption is leaked
	the symmetric key for encryption/decryption is lost

	Key infrastructure
	How keys can be stored on devices
	How keys can be deployed to devices
	When new keys should be generated
	How the build pipeline can fetch the keys
	How multiple keys can be used for key rotations
	How to handle the leak of a key to the public and how that impacts future updates

	Encryption Parameters

