
Infrastructure monitoring and testing

Contents1

The Apertis infrastructure . 22

Deployment types . 33

Traditional package-based deployments 34

Docker containers . 35

Docker Compose . 46

Kubernetes Helm charts . 47

Maintenance, monitoring and testing 48

Ensuring all components are up-to-date 49

Minimizing downtimes . 510

Reacting on regressions . 511

Keeping the users’ data safe . 512

Checking that data across services is coherent 613

Providing fast recovery after unplanned outages 614

Verify functionality . 615

Monitoring and communicating availability 716

Preventing performance degradations that may affect the user17

experience . 718

Optimizing costs . 719

Testing changes . 820

The Apertis infrastructure is itself a fundamental component of what Apertis21

delivers: its goal is to enable developers and product teams to work and collab-22

orate efficiently, focusing on their value-add rather than starting from scratch.23

This document focuses on the components of the current infrastructure and24

their monitoring and testing requirements.25

The Apertis infrastructure26

The Apertis infrastructure is composed by a few high level components:27

• GitLab28

• OBS29

• APT repository30

• Artifacts hosting31

• LAVA32

2

GitLab Frontend

GitLab Runner Manager

GitLab Run... GitLab Run... GitLab Run...

GitLab Runner Ma...

GitLab Run... GitLab Run...

OBS Frontend

OBS Work...OBS Work...OBS Work...

Artifacts Hosting

LAVA D...

LAVA DispatcherLAVA Dispatcher

LAVA D...LAVA D... LAVA D...

LAVA FrontendAPT Repository

Viewer does not support full SVG 1.133

From the point of view of developers and product teams, GitLab is the main34

interface to Apertis. All the source code is hosted there and all the workflows35

that tie everything together run as GitLab CI/CD pipelines, which means that36

its runners interact with every other service.37

The Open Build Service (OBS) manages the build of every package, dealing38

with dependency resolution, pristine environments and multiple architectures.39

For each package, GitLab CI/CD pipelines take the source code hosted with40

Git and pushes it to OBS, which then produces binary packages.41

The binary packages built by OBS are then published in a repository for APT,42

to be consumed by other GitLab CI/CD pipelines.43

These pipelines produce the final artifacts, which are then stored and published44

by the artifacts hosting service.45

At the end of the workflow, LAVA is responsible for executing integration tests46

on actual hardware devices for all the artifacts produced.47

3

Deployment types48

The high-level services often involve multiple components that need to be de-49

ployed and managed. This section describes the kind of deployments that can50

be expected.51

Traditional package-based deployments52

The simplest services can be deployed using traditional methods: for instance53

in basic setups the APT repository and artifacts hosting services only involve a54

plain webserver and access via SSH, which can be easily managed by installing55

the required packages on a standard virtual machine.56

Non-autoscaling GitLab Runners and the autoscaling GitLab Runners Manager57

using Docker Machine are another example of components that can be set up58

using traditional packages.59

Docker containers60

An alternative to setting up a dedicated virtual machine is to use services pack-61

aged as single Docker containers.62

An example of that is the GitLab Omnibus Docker container1 which ships all63

the components needed to run GitLab in a single Docker image.64

The GitLab Runners Manager using Docker Machine may also be deployed as65

a Docker container rather than setting up a dedicated VM for it.66

Docker Compose67

More complex services may be available as a set of interconnected Docker con-68

tainers to be set up with Docker Compose2.69

In particular OBS and LAVA can be deployed with this approach.70

Kubernetes Helm charts71

As a further abstraction over virtual machines and hand-curated containers72

most cloud providers now offer Kubernetes clusters where multiple components73

and services can be deployed as Docker containers with enhanced scaling and74

availabily capabilities.75

The GitLab cloud native Helm chart3 is the main example of this approach.76

1https://docs.gitlab.com/omnibus/docker/
2https://docs.docker.com/compose/
3https://docs.gitlab.com/charts/

4

https://docs.gitlab.com/omnibus/docker/
https://docs.docker.com/compose/
https://docs.gitlab.com/charts/
https://docs.gitlab.com/omnibus/docker/
https://docs.docker.com/compose/
https://docs.gitlab.com/charts/

Maintenance, monitoring and testing77

These are the goals that drive the infrastructure maintenance:78

• ensuring all components are up-to-date, shipping the latest security fixes79

and features80

• minimizing downtime to avoid blocking users81

• reacting on regressions82

• keeping the users’ data safe83

• checking that data across services is coherent84

• providing fast recovery after unplanned outages85

• verify functionality86

• preventing performance degradations that may affect the user experience87

• optimizing costs88

• testing changes89

Ensuring all components are up-to-date90

Users care about services that behave as expected and about being able to use91

new features that can lessen their burden.92

Deploying updates timely is a fundamental step to addess this need.93

Traditional setups can use tools like unattended-upgrades4 to automatically de-94

ploy updates as soon as they become available without any manual intervetion.95

For Docker-based deployment the pull command needs to be executed to ensure96

that the latest images are available and then the services need to be restarted.97

Tools like watchtower5 can help to automate the process.98

However, this kind of automation can be problematic for services where high99

availability is required, like GitLab: in case anything goes wrong there may be100

a considerable delay before a sysadmin becomes available to investigate and fix101

the issue, so explicitly scheduling manual updates is recommended.102

Minimizing downtimes103

To minimize the impact on users of the downtime due to the updates it is104

recommended to schedule them during a window where most users are inactive,105

for instance during the weekend.106

For example, every Saturday the Apertis sysadmin team checks if a new GitLab107

stable release has been published and applies the update, currently using the108

Omnibus container.109

The team managing the much larger, Kubernetes-based installation used by110

freedesktop.org6 have a policy where new patch versions are deployed with no111

4https://wiki.debian.org/UnattendedUpgrades
5https://github.com/containrrr/watchtower
6https://gitlab.freedesktop.org

5

https://wiki.debian.org/UnattendedUpgrades
https://github.com/containrrr/watchtower
https://gitlab.freedesktop.org
https://gitlab.freedesktop.org
https://gitlab.freedesktop.org
https://wiki.debian.org/UnattendedUpgrades
https://github.com/containrrr/watchtower
https://gitlab.freedesktop.org

prior testing during the week, while new minor/major versions are deployed112

during a weekend time window.113

To minimize downtime the Kubernetes-based cloud-native install lets sysadmins114

stagger component upgrades to reduce downtime, for instance by upgrading the115

Gitaly component at a different time from the Rails frontend.116

Reacting on regressions117

Some updates may fail or introduce regressions that impact users. In those cases118

it may be necessary to roll back a component or an entire service to a previous119

version.120

Rollbacks are usually problematic with traditional package managers, so this121

kind of deployment is acceptable only for service where the risk of regressions122

is very low, as it is for standard web servers.123

Docker-based deployment make this much easier as each image has a unique124

digest that can be used to control exactly what gets run.125

Keeping the users’ data safe126

In cloud deployments the object storage services is a common target of attacks.127

Care must be taken to ensure all the object storage buckets/accounts have strict128

access policies and are not public to prevent data leaks.129

Deleting unused buckets/accounts should also be done with care if other resource130

point to them: for instance, in some cases it can lead to subdomain takeovers7.131

Checking that data across services is coherent132

With large amounts of data being stored across different interconnected services133

it’s likely that discrepancies will creep in due to bugs in the automation or due134

to human mistakes.135

It is thus important to cross-correlate data from different sources to detect136

issues and act on them timely. The Apertis infrastructure dashboard8 currently137

provides such overview ensuring that the packaging data is consistent across138

GitLab, OBS, the APT repository and the upstream sources.139

Providing fast recovery after unplanned outages140

Unplanned outages may happen for a multitude of causes:141

• hardware failures142

• human mistakes143

7https://www.we45.com/blog/how-an-unclaimed-aws-s3-bucket-escalates-to-subdomain-
takeover

8https://infrastructure.pages.apertis.org/dashboard/

6

https://www.we45.com/blog/how-an-unclaimed-aws-s3-bucket-escalates-to-subdomain-takeover
https://infrastructure.pages.apertis.org/dashboard/
https://www.we45.com/blog/how-an-unclaimed-aws-s3-bucket-escalates-to-subdomain-takeover
https://www.we45.com/blog/how-an-unclaimed-aws-s3-bucket-escalates-to-subdomain-takeover
https://infrastructure.pages.apertis.org/dashboard/

• ransomware attacks144

To mitigate their unavoidable impact a good backup and restore strategy has145

to be devised.146

All the service data should be backed up to separate locations to make them147

available even in case of infrastructure-wide outages.148

For services it is important to be able to re-deploy them quickly: for this reason149

it is strongly recommended to follow a “cattle not pets”9 approach and be able150

to deploy new service instances with minimal human intervention.151

Docker-based deployment types are strongly recommended since the recovery152

procedure only involves the re-download of pre-assembled container images once153

data volumes have been restored from backups.154

Traditional approaches instead involve a lengthy reinstallation process even155

if automation tools such as Ansible are used, with good chances that the re-156

provisioned system differs significantly from the original one, requiring a more157

intensive revalidation process.158

On cloud-based setups it is strongly recommended to use automation tools like159

Terraform10 to be able to quickly re-deploy full services from scratch, potentially160

on different cloud accounts or even on different cloud providers.161

Verify functionality162

Apertis strongly pushes for automating as much as possible every workflow, to163

let developers focus on adding value rather than wasting time on repetitive tasks164

and to reduce the chance of manual errors.165

Such automation is usually implemented though GitLab CI/CD pipelines. Since166

those are the tools that developers use in their day-to-day operation it is reason-167

able to assume that in most cases the pipelines do not need special provisions168

to ensure they work correctly and that developers will detect issues quickly.169

Whilst this is generally the case, some pipelines may be more complex and170

critical so it is recommended to set up dedicated test procedures for them: for171

instance, the GitLab-to-OBS packaging pipeline now includes a fully automated172

test procedure11 to detect issues before they impact developers.173

Monitoring and communicating availability174

Timely detecting unplanned outages is as important as properly communicating175

planned downtimes.176

9http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle/
10https://www.terraform.io/
11https://gitlab.apertis.org/infrastructure/ci-package-builder/-/merge_requests/75

7

http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle/
https://www.terraform.io/
https://gitlab.apertis.org/infrastructure/ci-package-builder/-/merge_requests/75
https://gitlab.apertis.org/infrastructure/ci-package-builder/-/merge_requests/75
https://gitlab.apertis.org/infrastructure/ci-package-builder/-/merge_requests/75
http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle/
https://www.terraform.io/
https://gitlab.apertis.org/infrastructure/ci-package-builder/-/merge_requests/75

A common approach is to set up a global status page that reports the availability177

of each service and provides information to users about incidents being addressed178

and planned downtimes.179

The Apertis project uses the status page service provided by UptimeRobot12180

to track the availability of its user facing services. This is accessible at https:181

//stats.uptimerobot.com/R8MlxtrZXO.182

Preventing performance degradations that may affect the user expe-183

rience184

As the project grows, the needs of the infrastructure grow as well to keep the185

user experience good.186

Collecting metrics and tracking them over time is important to spot the area187

that need interventions.188

Among the many solutions available to create customizable dashboards out of189

metrics, Grafana is well integrated with GitLab and it is already included in190

the Omnibus distribution13.191

Optimizing costs192

Part of infrastructure maintenance is the continuous effort to efficiently use the193

available budget, optimizing cost without negatively affecting the user experi-194

ence. This is particularly important on cloud deployments which provide a large195

portfolio of options with wildly different and somewhat hard to anticipate costs.196

There are many ways to improve budget efficiency, here are a few examples in197

no particular order:198

• use different VM sizes for different purposes to avoid overspending on199

powerful machines that are underutilized200

• use cloud container services to host applications rather than hosting them201

on a dedicated VM202

• deploy multiple services on the same Kubernetes cluster, provided that203

there are no big trust boundaries between them: for instance, having the204

GitLab runners in the same cluster as the main GitLab instance is not a205

good idea as the runners are less trusted (they let developers run arbitrary206

code)207

• on cloud setups, minimize the outgoing network traffic208

• minimize storage consumption by reducing the artifacts size and with209

strict cleanup policies210

12https://uptimerobot.com/status-page/
13https://docs.gitlab.com/omnibus/settings/grafana.html

8

https://uptimerobot.com/status-page/
https://stats.uptimerobot.com/R8MlxtrZXO
https://stats.uptimerobot.com/R8MlxtrZXO
https://stats.uptimerobot.com/R8MlxtrZXO
https://docs.gitlab.com/omnibus/settings/grafana.html
https://docs.gitlab.com/omnibus/settings/grafana.html
https://docs.gitlab.com/omnibus/settings/grafana.html
https://uptimerobot.com/status-page/
https://docs.gitlab.com/omnibus/settings/grafana.html

Testing changes211

Applying changes to production services can be risky if not done with care, as212

it may introduce regressions or, in extreme cases, data losses.213

So far Apertis has been relying on services with proven track records of stable214

updates and the overall architecture of the infrastructure has been quite stable215

since the introduction of GitLab, so no big configuration change has ever been216

required. In this scenario, closely tracking stable upstream releases and deploy-217

ing them on a weekend not long after they get published has worked well with218

no major incidents.219

For instance, GitLab is updated weekly and the Apertis instance is always using220

the last point release, making thinks easier for major updates as that’s what221

the upstream documentation14 suggests, and no significant issues have been222

registered.223

It is important to read the release notes before applying updates, to learn about224

the pending deprecations and the versions in which they will become mandatory225

transitions. In the case of GitLab, the only disruptive transition has been226

a need to move from Postgres 6.x to 11.x as it required some action on the227

database files. Even in that case GitLab supported both 11.x and 6.x in parallel228

for approximately a year, giving administrators plenty of time to schedule the229

activity. In addition, it was possible to do the migration out of band, to minimize230

the downtime.231

However, larger changes may be too risky to be introduced directly in produc-232

tion. In these cases it is recommended to set up a test environment where the233

changes can be evaluated without affecting users.234

Automation tools like Terraform are recommended to be able to set up dedicated235

test environments with little effort and to reliably reproduce the changes in236

production once they are deemed safe.237

14https://docs.gitlab.com/ce/policy/maintenance.html#upgrading-major-versions

9

https://docs.gitlab.com/ce/policy/maintenance.html#upgrading-major-versions
https://docs.gitlab.com/ce/policy/maintenance.html#upgrading-major-versions

	The Apertis infrastructure
	Deployment types
	Traditional package-based deployments
	Docker containers
	Docker Compose
	Kubernetes Helm charts

	Maintenance, monitoring and testing
	Ensuring all components are up-to-date
	Minimizing downtimes
	Reacting on regressions
	Keeping the users' data safe
	Checking that data across services is coherent
	Providing fast recovery after unplanned outages
	Verify functionality
	Monitoring and communicating availability
	Preventing performance degradations that may affect the user experience
	Optimizing costs
	Testing changes

