
Long term reproducibility

Contents1

Background 22

Apertis artifacts and release channels 23

Reproducible build environments . 54

Build recipes . 65

Packages and repositories . 76

External artifacts . 87

Main artifacts and metadata . 98

Package builds . 109

Recommendations for product teams 1010

Implementation plan 1111

Snapshot the package archive . 1112

Version control external artifacts . 1113

Link to the tagged sources . 1114

How to reproduce a release build and customize a package 1115

Reproduce the build . 1116

Customizing the build . 1217

Example 1: OpenSSL security fix 2 years after release v1.0.0 1218

Getting started with Apertis: one year before release 1.0.0 1319

Creating the list of golden components: the day of the release 1.0.0 . . 1420

Using the golden components two years after release 1.0.0: Creating21

the new release . 1622

Reproduce the build . 1623

Customizing the build . 1724

Background25

One of the main goals for Apertis is to provide teams the tools to support their26

products for long life cycles needed in many industries, from civil infrastructure27

to automotive.28

This document discusses some of the challenges related to long-term support29

and how Apertis addresses them, with particular interest in reliably reproducing30

builds over a long time span.31

Apertis addresses that need by providing stable release channels as a platform for32

products with a clear trade-off between leading-edge functionality and stability.33

Apertis encourages products to track these channels closely to deploy updates34

on a regular basis to ensure important fixes reach devices in a timely manner.35

Stable release channels are supported for at least two years, and product teams36

2

have three quarters of overlap to rebase to the next release before the old one37

reaches end of life. Depending on the demand, Apertis may extend the support38

period for specific release channels.39

However, for debugging purposes it is useful to be able to reproduce old builds40

as closely as possible. This document describes the approach chosen by Apertis41

to address this use case.42

For our purposes bit-by-bit reproducibility is not a goal, but the aim is to be43

able to reproduce builds closely enough that one can reasonably expect that no44

regressions are introduced. For instance some non essential variations involve45

things like timestamps or items being listed differently in places where order46

is not significant, cause builds to not be bit-by-bit identical while the runtime47

behavior is not affected.48

Apertis artifacts and release channels49

As described in the release flow1 document, at any given time Apertis has mul-50

tiple active release channels to both provide a stable foundation for product51

teams and also give them full visibility on the latest developments.52

Each release channel has its own artifacts, the main one being the deployable53

images2 targeting the reference hardware platforms3, which get built by mixing:54

• reproducible build environments55

• build recipes56

• packages57

• external artifacts58

These inputs are also artifacts themselves in moderately complex ways:59

• build environments are built by mixing dedicated recipes and packages60

• packages are themselves built using dedicated reproducible build environ-61

ments62

However, the core principle for maintaining multiple concurrent release channels63

is that each channel should have its own set of inputs, so that changes in a64

channel do not impact other channels.65

Even within channels sometimes it is desirable to reproduce a past build as66

closely as possible, for instance to deliver a hotfix to an existing product while67

minimizing the chance of introducing regressions due to unrelated changes. The68

Apertis goal of reliable, reproducible builds does not only help developers in69

their day-to-day activities, but also gives them the tools to address this specific70

use-case.71

1https://jwd.pages.apertis.org/apertis-website/policies/release-flow/
2https://jwd.pages.apertis.org/apertis-website/policies/images/
3https://www.apertis.org/reference_hardware/

3

https://jwd.pages.apertis.org/apertis-website/policies/release-flow/
https://jwd.pages.apertis.org/apertis-website/policies/images/
https://jwd.pages.apertis.org/apertis-website/policies/images/
https://jwd.pages.apertis.org/apertis-website/policies/images/
https://www.apertis.org/reference_hardware/
https://jwd.pages.apertis.org/apertis-website/policies/release-flow/
https://jwd.pages.apertis.org/apertis-website/policies/images/
https://www.apertis.org/reference_hardware/

The first step is to ensure that all the inputs to the build pipeline are version-72

controlled, from the pipeline definition itself to the package repositories and to73

any external data.74

To track which input got used during the build process the pipeline stores an75

identifier for each of them to uniquely identify them. For instance, the pipeline76

saves all the Git commit hashes, Docker image hashes, and package versions in77

the output metadata.78

c564448 ← v2020:latest
cf381b5
919aaa7

Docker images for the build env

645e418 ← apertis/v2020
4920f99
cf6bfb7

Image recipes

20200309T115300Z ← v2020
20200309T091221Z
20200308T181534Z

APT repositories

b602ab1 ← apertis/v2020
34920f9
7c3842g

External resources
via Git-LFS

Build pipeline
with no overrides

Checkout recipes

Create build environment

Populate rootfs

Add extra data (e.g. demo music)

↓

↓

↓

↓

Output

Artifacts: ospacks, images...

Metadata:
meta/build-env.txt
/.pkglist.gz
/.filelist.gz

-

Capture build-env metadata

RECIPE_COMMIT=645e418
DOCKER_IMAGE=…@sha256:c564448
APT_SNAPSHOT=20200309T115300Z
MEDIA_REF=b602ab1

↓

-

79

While the pipeline defaults to using the latest version available in a specific80

channel for each input, it is possible to pin specific version to closely reproduce81

a past build using the identifiers saved in its metadata.82

4

34980ba ← v2020:latest
c564448
cf381b5

Docker images for the build env

ba983f1 ← apertis/v2020
283ba2c
645e418

Image recipes

20200412T122111Z ← v2020
20200411T161545Z
20200309T115300Z

APT repositories

b602ab1 ← apertis/v2020
34920f9
7c3842g

External resources
via Git-LFS

Build pipeline
setting BUILD_ENV_OVERRIDE

Checkout recipes

Create build environment

Populate rootfs

Add extra data (e.g. demo music)

↓

↓

↓

Output

Artifacts: ospacks, images...

Metadata:
meta/build-env.txt
/.pkglist.gz
/.filelist.gz

Override build-env metadata

RECIPE_COMMIT=645e418
DOCKER_IMAGE=…@sha256:c564448
APT_SNAPSHOT=20200309T115300Z
MEDIA_REF=b602ab1

↓

83

Reproducible build environments84

A key challenge in the long term maintenance of a complex project is the ability85

to reproduce its build environment in a consistent way. Failing to do so means86

that undetected differences across build environments may introduce hard to87

debug issues or that builds may fail entirely depending on where/when they get88

triggered.89

In some cases, losing access to the build environment effectively means that a90

project can’t be maintained anymore, as no new build can be made.91

To be able to avoid these issues as much as possible, Apertis makes heavy use92

of isolated containers based on Docker images493

All the Apertis build pipelines run in containers with minimal access to external94

resources to keep the impact of the environment as low as possible.95

For the most critical components, even the container images themselves are96

4https://gitlab.apertis.org/infrastructure/apertis-image-recipes/#building-in-docker

5

https://gitlab.apertis.org/infrastructure/apertis-image-recipes/#building-in-docker
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/#building-in-docker

created using Apertis resources, minimizing the reliance on any external service97

and artifacts.98

For instance, the apertis-v2020-image-builder container image provides the re-99

producible environment to run the pipelines building the reference image arti-100

facts for the v2020 release, and the apertis-v2020-package-source-builder con-101

tainer image is used to convert the source code stored in GitLab in a format102

suitable for building on OBS.103

Each version of each image is identified by a hash, and possibly by some tags.104

As an example the latest tag points to the image which gets used by default for105

new builds. However, it is possible to retrieve arbitrary old images by specifying106

the actual image hash, providing the ability to reliably reproduce arbitrarily old107

build environments.108

By default the Docker registry where image are published keeps all the past109

versions, so every build environment can be reproduced exactly.110

Unfortunately this comes with a significant cost from a storage point of view,111

so each team needs to evaluate the trade-off that better fits their goals in the112

spectrum that goes from keeping all Docker images around for the whole lifespan113

of the product to more aggressive pruning policies involving the deletion of old114

images on the assumption that changes in the build environment have a limited115

effect on the build and using an image version which is close to but not exactly116

the original one gives acceptable results.117

To further make build environments more reproducible, care can be taken to118

make their own build process as reproducible as possible. The same concerns119

affecting the main build recipes affect the recipes for the Docker images, from120

storing pipelines in Git, to relying only on snapshotted package archives, to121

taking extra care on third-party downloads, and the following sections address122

those concerns for both the build environments and the main build process.123

Build recipes124

The process to the reference images is described by textual, YAML-based Debos125

recipes5 Git repository, with a different branch for each release channel.126

The textual, YAML-based GitLab-CI pipeline definitions then control how the127

recipes are invoked and combined.128

Relying on Git for the definition of the build pipelines make preserving old129

versions and tracking changes over time trivial.130

Rebuilding the v2020 artifacts locally is then a matter of checking out the recipes131

in the apertis/v2020 branch and launching debos from a container based on the132

apertis-v2020-image-builder container image.133

5https://gitlab.apertis.org/infrastructure/apertis-image-recipes/

6

https://gitlab.apertis.org/infrastructure/apertis-image-recipes/
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/

By forking the repository on GitLab the whole build pipeline can be reproduced134

easily with any desired customization under the control of the developer.135

Packages and repositories136

The large majority of the software components shipped in Apertis are packaged137

using the Debian packaging format, with the source code stored in GitLab that138

OBS uses to generate prebuilt binaries to be published in a APT-compatible139

repository.140

Separate Git branches and OBS projects are used to track packages and versions141

across different parallel releases, see therelease flow6 document for more details.142

For instance, for the v2020 stable release:143

• the apertis/v2020 Git branch tracks the source revisions to be landed in144

the main OBS project145

• the apertis:v2020:{target,development,sdk} projects build the stable pack-146

ages147

• the deb https://repositories.apertis.org/apertis/ v2020 target develop-148

ment sdk entry points apt to the published packages149

For most of the time the stable channel is frozen and updates are exclusively150

delivered through the dedicated channels described below.151

Updates are split between small security fixes with low chance of regressions152

and updates that also address important but non security-related issues which153

usually benefit from more testing.154

For security updates:155

• the Git branch is apertis/v2020-security156

• the OBS projects are apertis:v2020:security:{target,development,sdk}157

• deb https://repositories.apertis.org/apertis/ v2020-security target de-158

velopment sdk is the APT repository159

Similarly, for the general updates:160

• the Git branch is apertis/v2020-updates161

• the OBS projects are apertis:v2020:updates:{target,development,sdk}162

• deb https://repositories.apertis.org/apertis/ v2020-updates target de-163

velopment sdk is the APT repository164

On a quarterly basis the stable channel get unfrozen and all the updates get165

rolled in it, while the security and updates channel get emptied.166

This approach provides to downstreams and product teams a stable basis to167

build their product without hard to control changes. Products are recommended168

to also track the security channel for timely fixes, enabling product teams to169

easily identify and review the changes shipped through it.170

6https://jwd.pages.apertis.org/apertis-website/policies/release-flow/

7

https://jwd.pages.apertis.org/apertis-website/policies/release-flow/
https://jwd.pages.apertis.org/apertis-website/policies/release-flow/

The updates channel is not directly meant for production, but it offers to product171

teams a preview of the pending changes to let them proactively detect issues172

before they reach the stable channel and thus their products.173

While the stability of the release channels is suitable for most use-cases, some-174

times it is desirable to reproduce an old build as close to the original as possible,175

ignoring any update regardless of their importance.176

To accomplish that goal the package archives are snapshotted regularly, storing177

their full history. The image build pipeline accepts an optional parameter to use178

a specific snapshot rather than the latest contents. This results in the execution179

installing exactly the same packages and versions as the original run, regardless180

of any changes that landed in the archive in the meantime.181

To use a snapshot it is sufficient to change the APT mirror address,182

for instance going from https://repositories.apertis.org/apertis/ to183

https://repositories.apertis.org/apertis/20200305T132100Z and similarly184

for product-specific repositories.185

Every time an update is published from OBS a snapshot is created, tracking the186

full history of each archive. More advanced use-cases can be addressed using187

the optional Aptly HTTP API7.188

External artifacts189

While the packaging pipeline effectively forbids any reliance on external arti-190

facts, the other pipelines in some case include components not under the previ-191

ously mentioned systems to track per-release resources.192

For instance, the recipes for the HMI-enabled images include a set of example193

media files retrieved from a multimedia-demo.tar.gz file hosted on an Apertis194

web server.195

Another example is given by the apertis-image-builder recipe checking out De-196

bos directly from the master branch on GitHub.197

In both cases, any change on the external resources impacts directly all the198

release channels when building the affected artifacts.199

A minimal solution for multimedia-demo.tar.gz would be to put a version in its200

URL, so that recipes can be updated to download new versions without affecting201

older recipes. Even better, its contents could be put in a version tracking tool,202

for instance using the Git LFS support available on GitLab.203

In the Debos case it would be sufficient to encode in the recipe a specific revision204

to be checked out. A more robust solution would be to use the packaged version205

shipped in the Apertis repositories.206

7https://www.aptly.info/doc/api/

8

https://www.aptly.info/doc/api/
https://www.aptly.info/doc/api/

Main artifacts and metadata207

The purpose of the previously described software items is to generate a set208

of artifacts, such as those described on the images8 page. With the artifacts209

themselves a few metadata entries are generated to help tracking what has been210

used during the build.211

In particular, the pkglist files capture the full list of packages installed on each212

artifacts along their version. The filelist files instead provide basic information213

about the actual files in each artifacts.214

With the information contained in the pkglist files it is possible to find the exact215

binary package version installed and from there find the corresponding commit216

for the sources stored in GitLab by looking at the matching Git tag.217

The build-env.txt file instead captures metadata about the build environment.218

For instance, here’s a sample from the pipeline that built the v2021dev3.0 re-219

lease9:220

PIPELINE_VERSION=20200921.1223221

DOCKER_IMAGE=registry.gitlab.apertis.org/infrastructure/apertis-docker-222

images/v2021dev3-image-builder@sha256:50724ec3105f9ea840fa70b536768148722ae59e09b7861a9051ad1397b57f64223

RECIPES_COMMIT=b4f1c5c85bd4603f2d9158f513c142a77a3c65c3224

RECIPES_URL=https://gitlab.apertis.org/infrastructure/apertis-image-recipes/225

PIPELINE_URL=https://gitlab.apertis.org/infrastructure/apertis-image-226

recipes/-/pipelines/157555227

UPLOAD_ROOT=/srv/images/public228

IMAGE_URL_PREFIX=https://images.apertis.org229

With the RECIPES_URL and RECIPES_COMMIT variables it is possible to find the exact230

revision of the recipes in the apertis-image-recipes project10231

The DOCKER_IMAGE variable captures the exact revision of the Docker image by232

explicitly using the digest syntax, to ensure the build environment can be re-233

produced perfectly. Care must be taken to ensure the retention policy of the234

container registry preserves the used image for long enough. For the Apertis235

reference image recipes we currently use a rather aggressive cleanup policy, only236

preserving images built during the past week but this can be easily customized237

from the GitLab UI11. Improving the preservation of the images used for each238

release is under discussion.239

The metadata above can then be used to reproduce the build.240

The implementation plan section defines the remaining planned improvements.241

8https://jwd.pages.apertis.org/apertis-website/policies/images/
9https://images.apertis.org/release/v2021dev3/v2021dev3.0/meta/build-env.txt

10https://gitlab.apertis.org/infrastructure/apertis-image-recipes/commit/
b4f1c5c85bd4603f2d9158f513c142a77a3c65c3

11https://docs.gitlab.com/ce/user/packages/container_registry/#cleanup-policy

9

https://jwd.pages.apertis.org/apertis-website/policies/images/
https://images.apertis.org/release/v2021dev3/v2021dev3.0/meta/build-env.txt
https://images.apertis.org/release/v2021dev3/v2021dev3.0/meta/build-env.txt
https://images.apertis.org/release/v2021dev3/v2021dev3.0/meta/build-env.txt
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/commit/b4f1c5c85bd4603f2d9158f513c142a77a3c65c3
https://docs.gitlab.com/ce/user/packages/container_registry/#cleanup-policy
https://docs.gitlab.com/ce/user/packages/container_registry/#cleanup-policy
https://docs.gitlab.com/ce/user/packages/container_registry/#cleanup-policy
https://jwd.pages.apertis.org/apertis-website/policies/images/
https://images.apertis.org/release/v2021dev3/v2021dev3.0/meta/build-env.txt
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/commit/b4f1c5c85bd4603f2d9158f513c142a77a3c65c3
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/commit/b4f1c5c85bd4603f2d9158f513c142a77a3c65c3
https://docs.gitlab.com/ce/user/packages/container_registry/#cleanup-policy

Package builds242

Package builds happen on OBS which does not have snapshotting capabilities243

and always builds every package on a clean, isolated environment built using244

the latest package versions for each channel.245

Since the purposes taken in account in this document do not involve large scale246

package rebuilds, it is recommended to use the SDK images and the deviants247

in combination with the snapshotted APT archives to rebuild packages in an248

environment closely matching a past build.249

Recommendations for product teams250

Builds for production should:251

1. pick a specific stable channel (for instance, v2020)252

2. version control the build pipelines using branches specific to a stable chan-253

nel254

3. in the build pipeline, use the latest Docker image for that specific channel,255

for instance v2020-image-builder or a product-specific downstream image256

based on that257

4. use the main OBS projects for the release channel, for instance aper-258

tis:v2020:target, with the security fixes from apertis:v2020:security:target259

layered on top260

5. store the product-specific packages in OBS projects targeting a specific261

release channel, layered on top of the projects mentioned in the previous262

point263

6. use the matching APT archives during the image build process264

7. deploy fixes from the stable channels as often as possible265

Development builds are encouraged to also use the contents from the non-266

security updates (for instance, apertis:v2020:updates:target) to get a preview267

of non time-critical updates that will folded in the main archive on a quarterly268

basis.269

The assumption is that products will use custom build pipelines tailored to the270

specific hardware and software needs of the product. However, product teams271

are strongly encouraged to reuse as much as possible from the reference Apertis272

build pipelines using the GitLab CI and Debos include mechanisms, and to fol-273

low the same best-practices about metadata tracking and build reproducibility274

described in this document.275

10

Implementation plan276

Snapshot the package archive277

To ensure that build can be reproduced, it is fundamental to make the same278

contents available from the package archive.279

The most common approach, also employed in Debian upstream, is to take280

snapshots of the archive contents so that subsequent builds can point to the281

snapshotted version and retrieve the exact package versions originally used.282

To provide the needed server-side support, the archive manager need to be283

switched to the aptly archive manager as it provides explicit support for snap-284

shots. The build recipes then need to be updated to capture the current snapshot285

version and to be able to optionally specify one when initiating the build.286

Due to the way APT works, the increase in storage costs for the snapshot is287

small, as the duplication is limited to the index files, while the package contents288

are deduplicated.289

Version control external artifacts290

External artifacts like the sample multimedia files need to be versioned just like291

all the other components. Using Git LFS and Git tags would give fine control292

to the build recipe over what gets downloaded.293

Link to the tagged sources294

The package name and package version as captured in the pkglist files are295

sufficient to identify the exact sources used to generate the packages installed296

on each artifacts, as they can be used to identify an exact commit.297

However, the process can be further automated by providing explicit hyperlinks298

to the tagged revision on GitLab.299

How to reproduce a release build and customize300

a package301

Reproduce the build302

1. Open the folder containing the build artifacts, for instance v2021dev3.0/12303

2. Find the build-env.txt metadata, for instance meta/build-env.txt13304

3. Find the project hosting the recipes with the RECIPES_URL variable in build-305

env.txt306

12https://images.apertis.org/release/v2021dev3/v2021dev3.0/
13https://images.apertis.org/release/v2021dev3/v2021dev3.0/meta/build-env.txt

11

https://images.apertis.org/release/v2021dev3/v2021dev3.0/
https://images.apertis.org/release/v2021dev3/v2021dev3.0/meta/build-env.txt
https://images.apertis.org/release/v2021dev3/v2021dev3.0/
https://images.apertis.org/release/v2021dev3/v2021dev3.0/meta/build-env.txt

4. On GitLab, fork14 the recipes project307

5. Create a new branch15 in the recipes repository pointing to the commit308

saved in the RECIPES_COMMIT field of build-env.txt, for instance commit309

b4f1c5c85bd4603f2d9158f513c142a77a3c65c316310

6. Go to Pipelines → Run Pipeline page on GitLab to execute a CI pipeline17311

7. Configure a variable18 of type File named BUILD_ENV_OVERRIDE312

8. Paste the contents of build-env.txt there313

9. Be careful with PIPELINE_VERSION: to avoid overwriting an existing build it314

is recommended to set a custom one315

10. Run the pipeline316

When the pipeline completes, the produced artifacts should closely match the317

original ones, albeit not being bit-by-bit identical.318

Customizing the build319

On the newly created branch in the forked recipe repository, changes can be320

committed just like on the main repository.321

For instance, to install a custom package:322

1. Check out the forked repository323

2. Edit the relevant ospack recipe to install the custom package, either by324

adding a custom APT archive in the /etc/apt/sources.list.d folder if avail-325

able, or retrieving and installing it with wget and dpkg (small packages can326

even be committed as part of the repository to run quick experiments327

during development)328

3. Commit the results and push the branch329

4. Execute the pipeline as described in the previous section330

Example 1: OpenSSL security fix 2 years after331

release v1.0.0332

Today a product team makes the official release of version 1.0.0 of their software333

that is based on Apertis. Two years from now a critical security vulnerability334

will be found and fixed in OpenSSL. How can the product team issue a new335

release two years from now with the only change being the fix to OpenSSL?336

It is important for product teams to consider their future requirements at the337

point they make a release. To ensure bug and security fixes can be deployed338

14https://docs.gitlab.com/ee/user/project/repository/forking_workflow.html#creating-a-
fork

15https://docs.gitlab.com/ee/gitlab-basics/create-branch.html
16https://gitlab.apertis.org/infrastructure/apertis-image-recipes/commit/

b4f1c5c85bd4603f2d9158f513c142a77a3c65c3
17https://docs.gitlab.com/ee/ci/pipelines.html#manually-executing-pipelines
18https://docs.gitlab.com/ee/ci/variables/README.html#create-a-custom-variable-in-

the-ui

12

https://docs.gitlab.com/ee/user/project/repository/forking_workflow.html#creating-a-fork
https://docs.gitlab.com/ee/gitlab-basics/create-branch.html
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/commit/b4f1c5c85bd4603f2d9158f513c142a77a3c65c3
https://docs.gitlab.com/ee/ci/pipelines.html#manually-executing-pipelines
https://docs.gitlab.com/ee/ci/variables/README.html#create-a-custom-variable-in-the-ui
https://docs.gitlab.com/ee/user/project/repository/forking_workflow.html#creating-a-fork
https://docs.gitlab.com/ee/user/project/repository/forking_workflow.html#creating-a-fork
https://docs.gitlab.com/ee/gitlab-basics/create-branch.html
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/commit/b4f1c5c85bd4603f2d9158f513c142a77a3c65c3
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/commit/b4f1c5c85bd4603f2d9158f513c142a77a3c65c3
https://docs.gitlab.com/ee/ci/pipelines.html#manually-executing-pipelines
https://docs.gitlab.com/ee/ci/variables/README.html#create-a-custom-variable-in-the-ui
https://docs.gitlab.com/ee/ci/variables/README.html#create-a-custom-variable-in-the-ui

with minimal impact on users a number of artifacts need to be preserved from339

the initial release:340

1. The image recipes341

2. The Docker images used as build environment342

3. The APT repositories343

4. External artifacts344

Getting started with Apertis: one year before release 1.0.0345

Good news! A product team has decided to use Apertis as platform for their346

product. At this stage there are a few recommendations on how to get started347

that will make it easier to use Apertis long term reproducibility features.348

The product team needs control over their software releases, and is important349

to decouple their releases from Apertis. One important objective is to give the350

product team control over importing changes from Apertis, such as package351

updates. We recommend using release channels for that.352

A product team can have multiple release channels, each reflecting what is353

deployed for a specific product. And because release channels are independent354

and parallel deliveries, a single product may even have multiple release channels,355

for instance a stable channel and a development one.356

In turn each product release channel is based on an Apertis release chan-357

nel. As an hypothetical example the automotive product team may have an358

automotive/cluster-v1 release channel for delivering stable updates to their359

cluster product, and an automotive/cluster-v2 release channel for development360

purposes, both based on the same apertis/v2020 release channel.361

Git repositories need to use a different branch for each release channel, and each362

release channel has its own set of projects on OBS. However only the components363

that the product team need to customize have to be branched or forked. To364

maximize reuse, it is expected that the bulk of packages used by every product365

team will come directly from the main Apertis release channels.366

1. What: Create a dedicated release channel367

2. Where: GitLab and OBS368

3. How: Create release channel branches in each Git repository that diverges369

from the ones provided by Apertis; set up OBS projects matching those370

release channels to build the packages371

In this way the product team has complete control on the components used to372

build their products:373

• Source code for all packages is stored on GitLab with full development374

history375

• Compiled binary packages are tracked by the APT archive snapshotting376

system for both the product-specific packages and the packages in the377

main Apertis archive.378

13

The previous step took care of the Apertis layer of the software stack, but there379

is one important set of components missing: the product team software. We380

suggest that product teams use one of Apertis recommended ways for shipping381

software which consists of using .deb packages or Flatpaks. For this example382

we are going to use .deb packages.383

While there are multiple ways of handling product team specific software, for384

this example we are going to recommend the product team to create a new APT385

suite and a few APT components, and host them on the Apertis infrastructure.386

We will call the new suite cluster-v1. The list of APT repositories will then be:387

deb https://repositories.apertis.org/apertis/ v2020 target development sdk388

deb https://repositories.apertis.org/automotive/ cluster-v1 target389

For reference, in APT terminology19 both v2020 and cluster-v1 are suites or390

distributions, and target, development, and sdk are components.391

The steps are:392

1. What: Create new APT suite and APT components for the product team393

2. Where to host: Apertis infrastructure394

Creating the list of golden components: the day of the395

release 1.0.0396

As we mentioned earlier each component is identified by a hash, and it is also397

possible to create tags. We recommend using hashes for identification of specific398

revisions because hashes are immutable. Tags can also be used, but we recom-399

mend careful evaluation as most tools allow tags to be modified after creation.400

Modifying tags can lead to problems that are difficult to debug.401

The image recipe is usually a small set of files that are stored in a single Git402

repository. Collect the hash of the latest commit of the recipe repository.403

1. What: Image recipe404

2. Where: Apertis GitLab405

3. How: Collect the Git hash of the latest commit of the recipe files406

The Docker containers used for building are stored in GitLab Container Registry.407

The Registry also allow to identify containers by hashes.408

There are expiration policies and clean-up tools for deleting old versions of409

containers. Make sure the golden containers are protected against clean-up and410

expiration.411

1. What: Docker containers used for building: apertis-v2020-image-builder412

and apertis-v2020-package-source-builder413

2. Where: GitLab Container Registry414

19https://manpages.debian.org/testing/apt/sources.list.5.en.html

14

https://manpages.debian.org/testing/apt/sources.list.5.en.html
https://manpages.debian.org/testing/apt/sources.list.5.en.html

3. How: On the GitLab Container Registry collect the hash for each con-415

tainer used for building416

4. Do not forget: Make sure the expiration policy and clean-up routines417

will not delete the golden containers418

From the perspective of APT clients, such as the tools used to create Apertis419

images, APT repositories are simply a collection of static files served through the420

web. The recommended method for creating the golden set of APT repositories421

is to create snapshots using aptly. Aptly is used by Debian upstream and is422

capable of making efficient use of disk space for snapshots. aptly snapshots are423

identified by tags. Something along the lines of:424

aptly snapshot create v1.0.0 from mirror target425

Repeat the command for target, development, sdk, and cluster-v1.426

It is important to mention that the product team needs to create a snapshot427

every time a package is updated. This is the only way to keep track the428

full history of the APT archive.429

1. What: APT repositories:430

deb https://repositories.apertis.org/apertis/ v2020 target development sdk431

deb https://repositories.apertis.org/automotive/ cluster-v1 target432

2. Where: aptly433

3. How: create a snapshot for each repository using aptly434

4. Do not forget: create a snapshot for every package update435

External artifacts should be avoided, but some times they are required. An436

example of external artifacts are the multimedia files Apertis uses for testing.437

Those files are currently simply hosted on a web server which creates two prob-438

lems: no versioning information, and no long term guarantee of availability.439

To address this issue we recommend creating a repository on GitLab, and copy440

all external artifacts to it. This gives the benefit of using the well defined441

processes around versioning and tracking that are already used by the other442

components. For large files we recommend using Git LFS.443

1. What: External artifacts: files that are needed during the build but that444

are not in Git repositories445

2. Where: A new repository in GitLab446

3. How: Create a GitLab repository for external artifacts, add files, use Git447

LFS for large files, and collect the hash pointing to the correct version of448

files449

Notice that the main idea is to collect hashes for the various resources used for450

building. The partial exception are external resources, but our suggestion is to451

also create a Git repository for hosting the external artifacts and then collect452

and use the Git hash as a pointer to the correct version of the content.453

15

At the time of writing there is work planned to automate the collection of454

relevant hashes that were used to create an image. The outcome of the planned455

work will be the publication of text files containing all relevant hashes for future456

use.457

Using the golden components two years after release 1.0.0:458

Creating the new release459

We recommend product teams to make constant releases, for example in a quar-460

terly basis, to cover security updates and to minimize the technical debt to461

Apertis upstream. However in some cases a product team may decide to have462

a much longer release cycle, and for our example, the product team decided to463

make the second release two years after the first one.464

For our example the product team wants the second release to include a fix for465

OpenSSL that corrects a security vulnerability, but be as identical as possible466

otherwise. A note of caution here is that deterministic builds, or the ability to467

build packages that are byte-by-byte identical in different builds, is not expected468

to happen naturally and is outside the scope of this guide. A good source of469

information about this topic is the Debian Reproducible Builds20 page.470

Our aim is to be able to reproduce builds closely enough so that one can reason-471

ably expect that no regressions are introduced. For instance some non essential472

variations could be caused by different time stamps or different paths for files.473

These variations cause builds to not be byte-by-byte identical while the runtime474

behavior is not affected.475

For our example the product team will import the updated OpenSSL package476

from Apertis, build the OpenSSL package, and build images for the new v1.0.1477

release.478

The first step is to rescue all the hashes that were collected on the day of the479

build.480

Reproduce the build481

The build-env.txt produced by the build pipeline should capture all the infor-482

mation needed to reproduce it as closely as possible:483

1. Retrieve the build-env.txt from the golden build484

2. On GitLab create a new branch21 on the previously identified recipe repos-485

itory. The branch should point to the golden commit which should be486

captured in the RECIPES_COMMIT field.487

20https://wiki.debian.org/ReproducibleBuilds
21https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-new-

branch-from-a-projects-dashboard

16

https://wiki.debian.org/ReproducibleBuilds
https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-new-branch-from-a-projects-dashboard
https://wiki.debian.org/ReproducibleBuilds
https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-new-branch-from-a-projects-dashboard
https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-new-branch-from-a-projects-dashboard

3. Execute a CI pipeline22 on the newly created branch, reproducing or488

customizing the original build environment by creating a variable called489

BUILD_ENV_OVERRIDE into which the contents from build-env.txt should be490

pasted, modifying it as desired.491

When the pipeline completes, the produced artifacts should closely match the492

original ones, albeit not being bit-by-bit identical.493

Customizing the build494

On the newly created branch in the forked recipe repository, changes can be495

committed just like on the main repository.496

For instance, to install a custom package:497

1. Check out the newly-created branch498

2. Edit the relevant ospack recipe to install the custom package, either by499

adding a custom APT archive in the /etc/apt/sources.list.d folder if avail-500

able, or retrieving and installing it with wget and dpkg (small packages can501

even be committed as part of the repository to run quick experiments502

during development)503

3. Commit the results and push the branch504

4. Execute the pipeline as described in the previous section505

22https://docs.gitlab.com/ee/ci/pipelines.html#manually-executing-pipelines

17

https://docs.gitlab.com/ee/ci/pipelines.html#manually-executing-pipelines
https://docs.gitlab.com/ee/ci/pipelines.html#manually-executing-pipelines

	Background
	Apertis artifacts and release channels
	Reproducible build environments
	Build recipes
	Packages and repositories
	External artifacts
	Main artifacts and metadata
	Package builds

	Recommendations for product teams
	Implementation plan
	Snapshot the package archive
	Version control external artifacts
	Link to the tagged sources

	How to reproduce a release build and customize a package
	Reproduce the build
	Customizing the build

	Example 1: OpenSSL security fix 2 years after release v1.0.0
	Getting started with Apertis: one year before release 1.0.0
	Creating the list of golden components: the day of the release 1.0.0
	Using the golden components two years after release 1.0.0: Creating the new release
	Reproduce the build
	Customizing the build

