
Applications

Contents1

Traditional package managers are unfit for applications 22

Terminology . 33

Graphical program . 34

Bundle . 35

Store account . 36

Software Categories . 37

Pre-installed Applications . 58

Responsibilities of the Application Store 69

Identifying applications . 710

Application Releasing Process . 1011

Application Installation Tracking 1012

Digital Rights Management . 1113

Permissions . 1214

Data Storage . 1315

Extending Storage Capabilities 1416

Application Management . 1517

Store Applications . 1518

System Extensions . 1819

License Agreements . 2020

Application Run Time Life-Cycle . 2121

Start . 2122

Background Operation . 2223

End . 2324

Frozen . 2525

Resource Usage . 2526

Applications not Written for Apertis 2627

Responsibilities of the Application Manager 2628

References . 2729

This document is intended to give a high-level overview of application handling30

by Apertis. Topics handled include the storage of applications and related data31

on the device, the format of the distributable application bundle files, how32

they’re integrated into the system, and how the system manages them at run-33

time. Topics related to the development of applications are covered by several34

other designs.35

Unfortunately, the term “application” has seen a lot of misuse in recent times.36

While many mobile devices have an “application store” that distributes “applica-37

tion packages”, what is actually in one of those packages may not fit any sensible38

definition of an application – as an example, on the Nokia N9 one can download39

a package from the application store that adds MSN Messenger capabilities to40

the existing chat application.41

To avoid ambiguity, this document will avoid using “application” as a jargon42

term. Instead, we use two distinct terms for separate concepts that could in-43

formally be referred to as applications: graphical programs, and application44

2

bundles. See Terminology.45

Apertis is a multiuser system; see themultiuser1 design document for more on the46

specifics of the multiuser experience and the division of responsibilities between47

middleware and HMI elements.48

Apertis has first shipped with a custom application framework to address the49

needs described in this document, seecanterbury legacy application framework2.50

The custom legacy framework is in the process of being replaced with an evolu-51

tion based upstream components, seeapplication framework3.52

Traditional package managers are unfit for applications53

Apertis relies heaviliy on a traditional packaging system to compose the base54

OS. However, it does not rely on it to distribute the composed system as it is not55

a good fit for the use-cases Apertis addresses, seesystem updates and rollback456

for more details. Similarly, a traditional packaging system is not a good fit for57

applications in Apertis since:58

• Apertis relies on a immutable base OS to implement a robust update59

mechanism, seesystem updates and rollback5 for more details. This means60

that a traditional package manager is not used to distribute updates on61

the field and that the writable application storage should be kept separate62

from the read-only base OS.63

• Application bundles don’t depend on each other – this makes creating64

a new special purpose package management solution much easier, and65

removes the main reason for customizing an existing solution to fit Apertis-66

specific needs.67

• Much of the complexity in application bundle handling (DRM, rollbacks,68

communicating security “permissions” to the user) is not part of the ex-69

isting package management tools, and is not interesting to the upstream70

tool maintainers.71

• Applications can have conflicting dependencies which can’t be shipped as72

part of the base OS and should be somehow bundled with the application73

itself.74

1https://jwd.pages.apertis.org/apertis-website/concepts/multiuser/
2https://jwd.pages.apertis.org/apertis-website/architecture/canterbury-legacy-

application-framework/
3https://jwd.pages.apertis.org/apertis-website/concepts/application-framework/
4https://jwd.pages.apertis.org/apertis-website/concepts/system-updates-and-rollback/
5https://jwd.pages.apertis.org/apertis-website/concepts/system-updates-and-rollback/

3

https://jwd.pages.apertis.org/apertis-website/concepts/multiuser/
https://jwd.pages.apertis.org/apertis-website/architecture/canterbury-legacy-application-framework/
https://jwd.pages.apertis.org/apertis-website/concepts/application-framework/
https://jwd.pages.apertis.org/apertis-website/concepts/system-updates-and-rollback/
https://jwd.pages.apertis.org/apertis-website/concepts/system-updates-and-rollback/
https://jwd.pages.apertis.org/apertis-website/concepts/multiuser/
https://jwd.pages.apertis.org/apertis-website/architecture/canterbury-legacy-application-framework/
https://jwd.pages.apertis.org/apertis-website/architecture/canterbury-legacy-application-framework/
https://jwd.pages.apertis.org/apertis-website/concepts/application-framework/
https://jwd.pages.apertis.org/apertis-website/concepts/system-updates-and-rollback/
https://jwd.pages.apertis.org/apertis-website/concepts/system-updates-and-rollback/

Terminology75

Graphical program76

A graphical program is a program with its own UI drawing surface, managed77

by the system’s window manager. This matches the sense with which “appli-78

cation” is traditionally used on desktop/laptop operating systems, for instance79

referring to Notepad or to Microsoft Word.80

Bundle81

A bundle or application bundle is a group of functionally related components82

(be they services, data, or programs), installed as a unit. This matches the sense83

with which “app” is typically used on mobile platforms such as Android and iOS;84

for example, we would say that an Android .apk file contains a bundle. Some85

systems refer to this concept as a package, but that term is strongly associated86

with dpkg/apt (.deb) packages in Debian-derived systems, so we have avoided87

that term in this document.88

Store account89

The Digital rights management section discusses store accounts, anticipated90

to have a role analogous to Google Play accounts on Android or Apple Store91

accounts on iOS. If these accounts exist, we recommend against using the term92

“user” for them, since that would be easily confused with the users found in the93

Multiuser design document; it is not necessarily true that every user has access94

to a store account, or that every store account corresponds to only one user.95

Software Categories96

The software in a Apertis device can be divided into three categories: platform,97

built-in application bundles and store application bundles. Of these categories,98

some store application bundles may be preinstalled.99

4

Store application bundles

Preinstalled application bundles

Weather Angry Birds

Yelp Twitter

Yahoo! Kindle Foursquare

identi.ca

Built-in application bundles

Browser Contacts Media player

Platform

libfolks dbus-daemon systemd

A
p

p
li
c
a
ti

o
n

 b
u

n
d

le
s

Essential software

Navigation

100

The platform is comprised of all the facilities used to boot up the device and101

perform basic system checks and restorations. It also includes the infrastruc-102

tural services on which the applications rely, such as the session manager, win-103

dow manager, message bus and configuration storage service, and the software104

libraries shared between components.105

Built-in application bundles are components that have a structure analogous106

to that of an application bundle from the application store, but can only be107

upgraded as part of an operating system upgrade, not separately. This should108

include all software laid on top of the platform that is on the critical path of109

user-facing basic functionality, and hence cannot be removed or upgraded except110

by installing a new operating system; this might include basic software such as111

the browser, email reader and various settings management applications.112

The platform and built-in applications combine to make up essential software:113

the bare minimum Apertis will always have installed. Essential software has114

strict requirements both in terms of reliability and security.115

5

Store application bundles are application bundles developed by third-parties116

to be used as add-ons to the system: they are not part of the system image and117

are made available for installation through the application store instead. While118

they may be important to the user, their presence is not required to operate the119

device properly.120

It is important to note that store application bundles can be shipped pre-121

installed on the device, which provides OEMs with a flexible way of providing122

differentiation or a more complete user experience by default.123

Pre-installed Applications124

On most software platforms there are two kinds of applications that come pre-125

installed on the device: what we call built-in application bundles and regular126

store application bundles. The difference between built-in application bundles127

and regular store application bundles that just happen to come pre-installed is128

essentially that the former are considered part of the system’s basic functionality,129

are updated along with the system and cannot be removed.130

Taking Apple’s iPad as an example, we can see that approach being applied:131

Safari, Weather, Mail, Camera and so on are built into the system.132

See http://www.apple.com/ipad/built-in-apps/ for a list133

They cannot be removed and they are updated through system updates. Apple134

doesn’t seem to include any store applications pre-installed, though.135

The Android approach is very similar: applications such as the browser are not136

removable and are updated with the system, but it’s much more common to137

have store applications be pre-installed, including Google applications such as138

GMail, Google Maps, and so on.139

The reason why browsers, mail readers, contacts applications are built-in soft-140

ware that come with the system is they are considered integral parts of the core141

user experience. If one of these applications were to be removed the user would142

not be able to utilize the device at all or would have a lot of trouble doing so:143

listening to music, browsing the web and reading email are basic expectations144

for any mobile consumer device.145

A second reason which is also important is that these applications often provide146

basic services for other applications to call upon. The classic example here is147

the contacts application that manages contacts used by text messaging, instant148

Internet messaging, email, and several other use cases.149

Case Study: a navigation application, how would it work?150

The navigation application was singled out as a case that has requirements and151

features that intersect those of built-in applications and those of store applica-152

tions. On the one hand, the navigation application is core functionality, which153

6

http://www.apple.com/ipad/built-in-apps/

means it should be part of the system. On the other hand, it should be pos-154

sible to make the application extensible or upgradable, enabling the selling of155

updated maps, for instance.156

Collabora believes that the best way to solve this duality is to separate program157

and data, and to follow the lead of other platforms and their app stores in pro-158

viding support for in-app purchases. This functionality is used often by games159

to provide additional characters, scenarios, weapons and such, but also used by160

applications to provide content for consumption through the application, such161

as magazine issues and also maps.162

For such a feature to work, it needs to be provided as an API that applications163

can use to talk to the app store to place orders and to verify which data sets164

the user should be allowed to download. The actual data should be hosted at165

the app store for downloading post-validation. The disposition of the data, such166

as whether it should be made available as a single file or several, whether the167

file or files are compressed or not, should be left for the application author to168

decide on based on what makes more sense for the application.169

Responsibilities of the Application Store170

The application store will be responsible for packaging a developer’s store appli-171

cation bundle into a bundle file along with a “store directory”(see Store direc-172

tory) that contains some generated metadata and a signature. Special “SDK”173

system images will provide software development tools and allow the installa-174

tion of unsigned packages, but the normal “target” system image will not allow175

the installation of packages that don’t contain a valid store signature.176

The owner of the store, via the signing authority of the application store, will177

have the ability to accept or reject any application to be run on Apertis. By178

disallowing any form of “self publication” by application developers, the store179

owner can ensure a consistent look and feel across all applications, screen appli-180

cations for malicious behavior, and enforce rigorous quality standards.181

However, pre-publication screening of applications will represent a significant182

time commitment, as even minor changes to applications must undergo thor-183

ough testing. High priority security fixes from developers may need to be given184

a higher priority for review and publication, and the priority of application up-185

dates may need to be considered individually. System updates will correspond186

to the busiest periods for both internal and external developers, and the appli-187

cation store will experience significant pressure at these times.188

In order for the the application update system to work properly, each new release189

of an application needs to have a version number greater than the previous190

release. The store may need to make changes to application metadata between191

the developer’s releases of that application. To allow the store to increment the192

application version without interfering with the developer’s version numbers, the193

store will maintain a “store version” number to be appended to the developer’s194

7

version number. The store version will start at 1 and be reset to 1 any time the195

developer increases the application version.196

As an example, if a developer releases an application with a version of 2.5 for197

publication, the store will release this under the version 2.5-1.198

This approach closely resembles the versioning scheme used in dpkg199

and rpm packages, which combine an “upstream version” with a200

“packaging revision”201

If the store ever needs to push an update to this application without waiting for202

the developer to create a new version, then the store version can be incremented203

from 1 to 2, and version 2.5-2 can be released without any intervention from the204

developer. This is expected to be an uncommon occurrence, but may be done205

to correct packaging problems, or even to disable an application if it’s found to206

have critical security flaws and the developer isn’t responsive.207

Identifying applications208

During the design of other Apertis components, it has become clear that several209

areas of the system design would benefit from a consistent way to identify and210

label application bundles and programs. In particular, the ability to provide211

a security boundary where inter-process communication is used relies on being212

able to identify the peer, in a way that ensures it cannot be impersonated.213

An application has several strings that might reasonably act as its machine-214

readable name in the system:215

• the name of the application bundle, being the Flatpak app-id6 or the name216

discussed in Application bundle metadata7217

• the D-Bus well-known name or names taken by the program(s) in the218

bundle, for instance via GLib’s GApplication interface219

• the name of the AppArmor profile attached to the program(s) in the bun-220

dle, if they have them221

• the name(s) of the freedesktop.org .desktop file(s) associated with the222

program(s), if they have them223

• the name of the systemd user service (.service file) associated with the224

program(s), if they have them225

We propose to align all of these as follows, matching the approach used by226

Flatpak for its application identifiers8:227

• The bundle ID is a case-sensitive string matching the syntactic rules for228

a D-Bus interface name, i.e. two or more components separated by dots,229

6http://docs.flatpak.org/en/latest/using-flatpak.html#identifiers
7application-bundle-metadata.md
8http://docs.flatpak.org/en/latest/using-flatpak.html#identifiers

8

http://docs.flatpak.org/en/latest/using-flatpak.html#identifiers
application-bundle-metadata.md
http://docs.flatpak.org/en/latest/using-flatpak.html#identifiers
http://docs.flatpak.org/en/latest/using-flatpak.html#identifiers
application-bundle-metadata.md
http://docs.flatpak.org/en/latest/using-flatpak.html#identifiers

with each component being a traditional C identifier (one or more ASCII230

letters, digits, or underscores, starting with a non-digit).231

This scheme makes every bundle ID a valid D-Bus well-known name,232

but excludes certain D-Bus well-known names (those containing the hy-233

phen/minus). This allows hyphen/minus to be used in filenames without234

ambiguity, and facilitates the common convention in which a D-Bus ser-235

vice’s main interface has the same name as its well-known name.236

• Application authors should be strongly encouraged to use a DNS name237

that they control, with its components reversed (and adjusted to follow238

the syntactic rules if necessary), as the initial components of the bundle239

ID. For instance, the owners of collabora.com and 7-zip.org might choose240

to publish com.collabora.MyUtility and org._7_zip.Decompressor, respec-241

tively. This convention originated in the Java world and is also used for242

Android application packages, Tizen applications, D-Bus names, GNOME243

applications and so on.244

• Application-specific filenames on disk should be based on the bun-245

dle name. For instance, com.collabora.MyUtility might have its246

program, libraries and data in appropriate subdirectories of /Appli-247

cations/com.collabora.MyUtility/. Built-in applications should also248

use the bundle ID; for instance, the Frampton executable might be249

/usr/Applications/org.apertis.Frampton/bin/frampton.250

• App-store curators should not allow the publication of a bundle whose251

name is a prefix of a bundle by a different developer, or a bundle that is252

in the essential software set. App-store curators do not necessarily need253

to verify domain name ownership in advance, but if a dispute arises, the254

app-store curator should resolve it in favour of the owner of the relevant255

domain name.256

• Well-known namespaces used by platform components (such as aper-257

tis.org, freedesktop.org, gnome.org, gtk.org) should be restricted to app258

bundles associated with the relevant projects. Example projects provided259

in SDK documentation should use the names that are reserved for260

examples (see RFC26069), such as example.com, but app-store curators261

should not publish bundles that use such names.262

• Programs in a bundle may use the D-Bus well-known name correspond-263

ing to the bundle ID, or any D-Bus well-known name for which the264

bundle ID is a prefix. For instance, the org.apertis.Frampton bundle265

could include programs that take the bus names org.apertis.Frampton,266

org.apertis.Frampton.UI and/or org.apertis.Frampton.Agent.267

• Programs in a bundle all use the same AppArmor profile. As a result of the268

convention that AppArmor profile names are equal to on-disk filenames,269

its name must start with the installation location based on the bundle ID.270

9http://www.rfc-editor.org/info/rfc2606

9

http://www.rfc-editor.org/info/rfc2606
http://www.rfc-editor.org/info/rfc2606

Further, to allow upgrade and rollback to be carried out without making271

the system insecure, we currently require that every store app-bundle’s272

AppArmor profile is deterministically derived from the bundle ID, by being273

exactly /Applications/${bundle_id}/** where ${bundle_id} represents the274

bundle ID. (See AppArmor profiles for rationale for this choice.)275

For instance, all programs in the org.apertis.Frampton built-in276

app-bundle would run under a profile whose name starts with277

/usr/Applications/org.apertis.Frampton/, and all programs in the278

com.example.ShoppingList store app-bundle would run under a profile279

named /Applications/com.example.ShoppingList/**.280

• If a program is a systemd user or system service, the service file should be281

the program’s D-Bus well-known name followed by .service, for example282

org.apertis.Frampton.Agent.service. Similarly, if a program has a freedesk-283

top.org .desktop file, its name should be the program’s D-Bus well-known284

name followed by .desktop, for example org.apertis.Frampton.UI.desktop.285

In particular, using the bundle ID in the AppArmor profile name makes it trivial286

for a D-Bus service to identify the application bundle to which a peer belongs:287

• the service can learn the AppArmor profile name via the standard GetCon-288

nectionCredentials D-Bus method call289

• if the profile starts with /Applications/, followed by a syntactically valid290

bundle ID, followed by either end-of-string or /, then the peer is a store291

app-bundle with the bundle ID that appears after the second /292

• if the profile starts with /usr/Applications/, followed by a syntactically293

valid bundle ID, followed by either end-of-string or /, then the peer is a294

built-in app-bundle with the bundle ID that appears after the third /295

• if the profile starts with one of the well-known executable directories296

for the platform (/usr/, /bin/, /lib/ etc.) and does not start with297

/usr/Applications, or the profile has the special value unconfined indicat-298

ing the absence of AppArmor confinement, then the peer is a platform299

component300

• otherwise, the peer is in an unknown category and must not be given any301

special privileges302

The same approach can be used across any other IPC channel on which a process303

can securely query the peer’s LSM (Linux Security Module) context, such as304

Unix sockets or kdbus.305

A library available to platform services should provide a recommended imple-306

mentation of this algorithm.307

This was implemented in libcanterbury-platform.308

10

Application Releasing Process309

Once application testing is complete and an application is ready to be dis-310

tributed, the application releasing process should contain at least the following311

steps:312

• Verify that the application’s bundle ID does not collide with any bundle313

by a different publisher (in the sense that neither is a prefix of the other).314

• Generate an AppArmor profile for the application based on its [permis-315

sions]316

• Generate the application’s Store directory.317

• Make the application available at the store.318

Application Installation Tracking319

The System Updates and Rollback design describes a method of migrating set-320

tings and data from an existing Apertis system to another one. To work prop-321

erly, the application store would need to have a list of applications installed on322

a specific Apertis device.323

If the application store keeps a database of vehicle IDs and the applications324

purchased for them, this will help in order to facilitate software updates and to325

simplify software re-installation after a system wipe.326

The application store can only know which applications have been downloaded327

for use in a specific vehicle – with no guarantee of a persistent Internet con-328

nection, the store has no way to know whether the application has really been329

installed or subsequently uninstalled. The store also can’t reliably track what330

version of an application is installed.331

If an application is downloaded on a computer with a web browser (presumably332

for installation via external media), the store shouldn’t assume it was actually333

installed anywhere. Only applications installed directly to the device should be334

logged as installed. When the user logs in to the store (or the device logs into335

the store with the users credentials to check for updates), the list of installed336

packages can be synchronized.337

If an application is installed from a USB storage device the application manager338

could write a synchronization file back to the device that could subsequently be339

uploaded back to the application store from a web browser. Care should be340

taken to ensure these files can’t be used by malicious users to steal applications341

– the store should check that the applications listed in the synchronization file342

have been legitimately purchased by the user and the file’s contents should be343

discarded if they have not.344

To perform a migration for a device that hasn’t had a consistent Internet con-345

nection, the device could be logged into the store to synchronize its application346

list prior to beginning the migration process.347

11

Digital Rights Management348

Details of how DRM is to be used in Apertis are not finalized yet, but some349

options are presented here.350

The store is in a convenient position to enforce access control methods for appli-351

cations. When an application is purchased, the application store can generate352

the downloadable bundle with installation criteria built in.353

The installation could be locked in the following ways:354

• Locked to a specific vehicle ID – it will only install on a specific vehicle.355

The Apertis unit will refuse to install the application if the vehicle ID does356

not match the ID embedded in the downloaded application package.357

• Locked to a specific device ID – it will only install on a specific Apertis358

unit.359

• Locked to a customer ID – It will only install for a specific person, as360

represented by their store account - presumably a store account must be361

present and logged in for this to work. The store account is assumed362

to be analogous to an Apple Store or Google Play account: as noted in363

Terminology, we recommend avoiding the term “user” here, since a store364

account does not necessarily correspond 1:1 to the “users” discussed in the365

Multiuser design document.366

Any “and” combination of these 3 locks could also be used. For example, an367

application bundle may only be installable to a specific device in a specific368

vehicle (in other words, locked to vehicle ID and device ID) – if the Apertis369

unit is placed in another vehicle, or the vehicle’s Apertis unit is replaced, the370

application bundle would not be installable.371

Conversely, rights could also be combined with the “or” operator, such as al-372

lowing an application bundle to be installed if either the correct Apertis unit373

is used, or the correct vehicle. Collabora recommends these combinations not374

be implemented. Most of the combinations provided by “or” aren’t obviously375

useful.376

It might also be useful to distribute some packages in an unlocked form – free377

software, ad sponsored software, or demo software may not require any locking378

at all. Ultimately, this is a policy decision, not a technical one, as they could379

just as easily be locked to the downloader’s account.380

Note that these are all install time checks, and if a device is moved to another381

vehicle after successfully installing a bundle, it may result in running an app382

somewhere that an application developer or OEM didn’t intend it to be run. In383

order to prevent this from happening, it would be more reliable to do launch-384

time testing of the applications.385

The store would generate a file to be bundled with the application that listed the386

launch criteria, and the application manager would check those criteria before387

12

launching the application for use.388

It should be considered that launch time testing would require a user to be389

logged in to the store in some way if the applications are to be keyed to a store390

account. This would make it impossible to launch certain applications when391

Apertis is without network connectivity, and could be a source of frustration for392

end users.393

Permissions394

Applications can perform many functions on a variety of user data. They may395

access interfaces that read data (such as contacts, network state, or the users396

location), write data, or perform actions that can cost the user money (like send-397

ing SMS). As an example, the Android operating system has a comprehensive398

manifest10 that govern access to a wide array of functionality.399

Some users may wish to have fine grained control over which applications have400

access to specific device capabilities, and even those that don’t should likely be401

informed when an application has access to their data and services.402

See the Permissions concept design11 for further details.403

Application developers will declare the permissions their application depends404

on in application bundle metadata12, and Apertis will allow a user to approve405

a subset of an application’s required permissions.406

There are some difficulties in allowing users to accept only some of the permis-407

sions an application developer expected their software to have access to:408

• Some of the permissions will be controlled by an AppArmor profile gen-409

erated by the application store. The user is merely accepting the profile,410

actually changing it would not be trivial.411

• AppArmor profiles are per-application, not per user. AppArmor profiles412

would need to be changed on user switch if different users required different413

permission configurations for the same applications.414

• A huge testing burden is placed on the application developer if they can’t415

rely on the requested permissions. They must test their applications in416

all possible configurations.417

• The permissions may be required for the application developer’s business418

model – be that network permissions for displaying advertising, or GPS419

information for crowd sourcing traffic information. Allowing the user to420

restrict permissions in these situations would be unfair to the developer.421

To mitigate some of these problems, there must be two kinds of permissions:422

required and optional. Required permissions are those that can’t be removed423

10http://developer.android.com/reference/android/Manifest.permission.html
11permissions.md
12application-bundle-metadata.md

13

http://developer.android.com/reference/android/Manifest.permission.html
permissions.md
application-bundle-metadata.md
http://developer.android.com/reference/android/Manifest.permission.html
permissions.md
application-bundle-metadata.md

from an application – such as anything granted by the AppArmor profile. If a424

user chooses to deny a required permission, an application can not run.425

Optional permissions are handled by higher level APIs in the SDK and may be426

influenced by system settings. Apertis-specific “wrapper” services that abstract427

the functionality of lower level libraries can provide access controls. These wrap-428

per services would act based on the individual user’s settings and preferences, so429

each user would have control over the applications they use. Because these ser-430

vices must act as a trust boundary between apps within the scope of a particular431

user’s account, a privilege boundary must be imposed between the app bundle432

and the wrapper service: to provide this boundary, they must be implemented433

as a separate service process, rather than merely a library that is loaded by the434

application program.435

Some permissions may prove to be more of an annoyance than helpful to the436

user. For example, if Start are employed by vast numbers of applications, users437

may not wish to be informed every time a new application requires one. It may438

be worth considering having some permission acceptance governed by system439

settings, and only directly query the user if a permission is “important” (such440

as sending SMS).441

Data Storage442

Applications will have access to several types of writable application storage.443

Care should be taken to select the appropriate area as different areas are handled444

differently if rollbacks (See Roll-back) occur. The storage types are:445

• Application User – for settings and any other per-user files. In the event446

of an application rollback, files in this area are rolled back with their447

associated application.448

• Application Everyone – for data that is rolled back with an application449

but isn’t tied to a user account – such as voice samples or map data.450

• Cache – for easily recreated data. If the system is low on storage space,451

it may reclaim cache space for applications that aren’t currently running.452

Caches will be cleared on update and rollback instead of being stored by453

the rollback system.454

• Shared – This area’s contents are not touched by the application manage-455

ment framework for any reason. They are also not subject to any form of456

rollback. This area is intended for storage of videos, music, photos and457

other data in standard formats that aren’t tied to a single application,458

analogous to /sdcard on Android devices. Since Apertis space may be lim-459

ited, and since it is thought that users will usually want to share media460

between accounts, the data in this storage area will be accessible by all461

users. More details on this are available in themultiuser13 design.462

13https://jwd.pages.apertis.org/apertis-website/concepts/multiuser/

14

https://jwd.pages.apertis.org/apertis-website/concepts/multiuser/
https://jwd.pages.apertis.org/apertis-website/concepts/multiuser/

The XDG Base Directory Specification14 environment variables will guide ap-463

plications to find the appropriate locations for the different storage types.464

Extending Storage Capabilities465

It may be desirable for some Apertis devices to allow the user to install an SD466

card to increase storage capacity. Since SD cards are removable – possibly even467

at runtime – they present some problems that need to be addressed:468

• Allowing applications to be run from SD cards makes it more difficult to469

prevent software piracy.470

• An SD card should be properly unmounted by the system before being471

physically removed from the device.472

It is recommended that SD card storage not be used for the installation of473

applications or any manner of system software, as this could give users a way474

to run untrusted code, or tamper with application settings or data in ways the475

developers haven’t anticipated. Media files are obvious candidates for placement476

on this type of removable storage, as they don’t provide key system functionality,477

and are not trusted data.478

If it is critical that applications (or other trusted data, such as navigation maps)479

be run off of removable storage, allowing the system to “format” the device be-480

fore use, deleting all data already on the card and replacing it with an encrypted481

BTRFS filesystem would allow a secure method of placing application storage482

on the device.483

The dm-crypt LUKS15 system would be used to encrypt the storage device484

using a random binary key file. These key files would be generated at the time485

the external storage device is formatted and stored along with the device serial486

number. One way to generate a key file would be to read an appropriate number487

of bytes (such as 32) from /dev/random.488

The key store will be in a directory in the var subvolume (but not in /var/lib)489

as the var subvolume is not tracked by system rollbacks. If the key files were in490

a volume subject to rollbacks, they would disappear and render external storage491

unreadable after a system rollback that crossed their creation date.492

It is imperative that the key store not be accessible to a user as it would allow493

them to directly access their removable storage device on another computer and494

potentially copy and distribute applications.495

The device could be recognized by its label as reported by the blkid command,496

and added to the startup application scan in Boot time procedures.497

If this is extended to multiple SD cards, difficulties arise in deciding which498

storage device to install an application to. Either configuration options will499

14http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
15https://code.google.com/p/cryptsetup/

15

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://code.google.com/p/cryptsetup/
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://code.google.com/p/cryptsetup/

need to be added to control this, or the device with the greatest free space at500

the time of installation can be selected.501

Many embedded devices require some manner of disassembly to remove an SD502

card, preventing the user from removing it while the system is in operation (such503

as a mobile phone that hides the SD card behind the battery). If an approach504

such as this is used, there is no need for special “eject” procedures for the SD505

storage. If this is not possible however, some manner of interface will need to506

be provided so the user can safely unmount the SD card before removal.507

If it’s physically possible for a user to remove the SD card while the system508

is running, the operating system and applications may be exposed to difficult509

to recover from situations and poorly tested code paths. These sorts of SD510

card sockets should probably not be used for cards using the BTRFS filesystem.511

Instead, the better tested FAT-32 filesystem should be used.512

Application Management513

Applications will be distributed by the application store as compressed “appli-514

cation bundles” containing programs and services that can be launched in a515

variety of ways – with the limitation that an application bundle can’t contain516

more than one program launchable from the application launcher, or more than517

one agent.518

All communication with the application store will take place over a519

secure HTTPS connection.520

The metadata in this bundle provides information about the application such521

as it’s user friendly name, services it needs from the system (such as querying522

the GPS), permissions it needs from the user, and the versions of system APIs523

it depends on.524

An application bundle may provide back-ends to existing system functionality525

and add new features to installed software without necessarily adding any new526

applications to the application manager. These are called “system extensions”527

and are detailed in System extensions.528

Store Applications529

Acquisition530

Applications will be made available through the application store as compressed531

files.532

Since Apertis may have limited or no Internet connectivity, it must be possible533

to download an application elsewhere and install it from a USB storage device.534

Even if Internet connectivity is available the download process must be reliable535

– it must be possible to resume a partially completed application download if the536

connection is broken or Apertis is shut down before the download completes.537

16

A background download service will be provided by Apertis (See Reliable down-538

load service). This service will continue downloads if they are interrupted or if539

the system is restarted. When the download is completed, or if the download540

is incapable of being completed, a callback will be made to the requester via541

D-Bus.542

The user interface components will be able to query status from the download543

service in order to display status about the installation – including a completion544

percentage or a position in the download queue.545

Installation546

If an application is being installed directly from the store, the application bundle547

metadata will be downloaded and the user allowed to select a subset of [permis-548

sions] to allow, or cancel the installation. If the installation is to proceed, an549

icon to be displayed in the launcher while the download and installation takes550

place will now be acquired from the application store.551

If the application is being provided from a USB device, the application bundle552

metadata and icon are extracted from the application bundle.553

Displaying an accurate progress indicator while installing an application is non-554

trivial. One simple option is to include the full decompressed size of the ap-555

plication in its metadata and send an update to the user interface occasionally556

based on the amount of bytes written.557

This assumes that “number of bytes left to install” directly correlates to “amount558

of time left to completion”, and suffers from a couple of common problems:559

• Eventually storage caches are filled and begin writing out causing a dra-560

matic slowdown in apparent installation speed for larger applications.561

• Decompression speed may vary for different parts of the same archive.562

However, users are unlikely to notice even moderate inaccuracies in an instal-563

lation percentage indicator, so this may be adequate without requiring compli-564

cated development that may not solve these problems anyway.565

Upgrades566

If configured with a suitable Internet connection, the system will periodically567

check whether upgrades are available for any store applications that have been568

installed. Apertis will provide its vehicle ID to the application store and the569

application store will reply with a list of the most recent versions of the ap-570

plications authorized for the vehicle. If Apertis has had software installed or571

removed without an Internet connection, the list of installed applications will572

be synchronized with the store at this time.573

Some users may voice concerns over the store’s tracking of all the installed574

packages on their Apertis. It may be worth mentioning in a “privacy policy”575

17

exactly what the data will be used for.576

If no Internet connection is available, the user can still supply a newer version577

of an application on a USB device to start an upgrade. They can acquire ap-578

plication bundles from the store web page, which will provide the latest version579

of applications for download. Old application versions will not be available580

through the store.581

Since the application store attempts to track installed applications, it could582

notify a user by e-mail when updates are available, or show a list of updated583

application when the user logs in to the store.584

In order to allow application rollbacks to rollback the user data associated with585

an application, all running instances of an application will have to be closed prior586

to starting an upgrade for data coherency reasons. The user will be unable to587

launch an instance of the application during the upgrade process. The system588

won’t recognize services, handlers, or launchable components of the application589

until the final phase of installation is complete.590

Removal591

When a user removes the application, any personal settings and caches required592

by the application will be automatically removed along with any user specific593

data stored for rollback purposes – files the application has stored in general594

storage will be left behind.595

Removing a third-party music player shouldn’t delete the user’s music collection,596

but it should delete any configuration information specific to that player. For597

this to work properly, application developers need to be careful to store data in598

the appropriate locations.599

Roll-back600

Apertis may have a per-application rollback system that allows an end user to601

revert to the last installed version of an application (that is, a single previously602

installed version will be kept when an upgrade is performed), with all their603

settings and data in exactly the state it had been the last time they used it.604

This rollback paradigm has some interesting quirks:605

• If a user rolls back an application, all other users of that application will606

also be rolled back. This allows one user to delete some of another user’s607

settings and personal data.608

• As some software updates may contain critical security fixes, an ever grow-609

ing blacklist will have to be maintained to prevent a user from rolling back610

to potentially dangerous versions.611

• Developers will have no control over what software versions their cus-612

tomers are using, making long term support very difficult. They may613

18

receive bug reports for bugs already fixed in newer versions of the soft-614

ware.615

• Old versions of applications may break if they interact with online services616

that changed their protocols, or if Apertis APIs are deprecated.617

• Application developers have to think very carefully about what data goes618

into application storage (and is subject to rollbacks) and general storage619

(which isn’t). In reality, application developers will likely pay very lit-620

tle attention to this distinction and the application store will carry this621

burden.622

• The effect of a system rollback on installed applications is unclear. If an623

application has been upgraded twice since the last system update and a full624

system rollback occurs it is possible for applications to have no launchable625

version installed.626

• In some cases an application rollback may not even be possible if the old627

version of the application is not capable of running on the current version628

of the system.629

• Settings management tools like GSettings directly manipulate application630

setting data and don’t currently support the rollback system.631

The settings problems can be mitigated by using the persistence API from the632

SDK when writing applications, allowing Apertis to hide the complexity from633

the application developer. Each application should have its own database of634

settings instead of using a single system-wide database.635

After application rollback, launching the application now will use the previously636

installed version with all settings and private data in the state they were before637

the upgrade.638

System Extensions639

In the context of Apertis, system extensions may refer to themes and skins640

which provide global user interface changes, or plug-ins for existing frameworks641

that aren’t intended for extension by regular application developers.642

Generally speaking, these will be purchasable add-ons that don’t fit into the643

category of “application”, and are instead additions to basic system functional-644

ity. Examples include downloadable content that radically changes the visual645

appearance of all applications under Apertis, or a plug-in that integrates Skype646

with the contacts and communications software.647

While these don’t fit the standard role of an application, they are still made648

available as bundles through the application store, and their installation is still649

handled by the application manager.650

The application bundle metadata will have a list of known extension “types”,651

and extension components inside an application bundle will be handled differ-652

19

ently based on the specified type. There is no comprehensive list of extension653

types, but “Telepathy connection manager” and “theme” will be the commonly654

used examples in this document.655

System extensions, being outside the realm of regular application developers,656

are entitled to make assumptions about available libraries and frameworks that657

applications are not. This makes rolling them back independently complicated,658

and some simplifications are made by disallowing manual rollback of extensions,659

and only rolling them back automatically with a system rollback.660

Installation661

There will be no difference between an application bundle or a “system extension662

bundle” - and it may even be desirable to deploy an application with supporting663

system extensions from the same bundle.664

Most of the process for installing a bundle with system extensions will be no665

different than the usual application installation process. However, the “applica-666

tion specific metadata” configuration will include exporting files in the system667

extension directories.668

Depending on the extension, the newly installed extension may not be functional669

until daemons are restarted, or programs rescan plug-in directories.670

Determining what needs to be restarted can be difficult, and could be different671

depending on what other system extensions have been installed. For simple672

add-ons like themes, or Telepathy connection managers, no restarts or re-loads673

should be required, so no special effort needs to be made.674

For more invasive system extensions, the application manager can decide based675

on the extension type in the application bundle metadata whether the function-676

ality requires that the system be restarted. The user should be informed during677

installation that new features will only be present next time they start their678

vehicle.679

Upgrades680

There may be additional steps required based on the extension type – for ex-681

ample, if a theme is being upgraded, the application manager should check if it682

is the theme currently being used to render GUI elements. If it is, the system683

may need to switch to a default theme before the upgrade begins, and switch684

back after the upgrade finishes.685

Apart from any extension type specific steps performed by the application man-686

ager, the upgrade process will be exactly as described in Upgrades.687

Removal688

Once again, the process only deviates from Removal by performing any specific689

actions required by the extension type before following the standard procedure.690

20

As an example, if the extension is a theme, the system should ensure it is not691

currently in use before beginning the usual removal process.692

Rollback693

Like regular applications, a system rollback will automatically rollback system694

extension components.695

An intentional rollback will only need special steps at the start of the process,696

dependent on the type of extension being handled.697

Since system extensions are likely to be low level components, it may be a good698

idea to disallow rolling them back in order to ensure important bug fixes can be699

deployed.700

License Agreements701

Collabora does not have legal expertise in these matters, and any702

authoritative information – especially if financial damages may be703

involved – should be supplied by the appropriate legal advisers.704

Each application may have its own license agreements, privacy policies, or other705

stipulations a user must accept before they can use the application. Different706

OEMs may have different requirements, and the legal requirements governing707

the contents of these documents may vary from country to country.708

Such licenses generally disclose information regarding the use of data collected709

by an application or related services, define acceptable usage of the application710

or services by a user, or discuss the warranty and culpability of the application711

provider.712

Regardless of content, Apertis should make all reasonable efforts to ensure a user713

has agreed to the appropriate agreements before they may use an application.714

The first step to accomplishing this goal is to require a user accept the license715

agreement before downloading an application from the store.716

As this only requires a single user to accept the agreement, and does nothing for717

built-in applications, it is an incomplete solution. Requiring acceptance of the718

license terms when an application is installed, or when it is enabled for a user’s719

account, would increase the likelihood that a user has agreed to the appropriate720

license.721

If license terms change between releases, it might be advisable to ask users722

to accept the license terms on the first launch after an application update or723

rollback as well.724

Ultimately, there is no guarantee that the person using a Apertis account is the725

person that agreed to an application’s license.726

Some licenses, such as the GPL, inform the user of their rights to obtain a copy727

of the source code of the software. Licenses like this should be made available728

21

to the user, but don’t necessarily need to be displayed to the user unless the729

user explicitly requests the information.730

Application Run Time Life-Cycle731

The middleware will assist UI components in launching and managing applica-732

tions on Apertis. Application bundles can provide executable files (programs)733

to be launched via different mechanisms, some of them user visible (perhaps734

as icons in the application manager that will launch a graphical program), and735

some of them implicit (like a connection manager for the Telepathy framework,736

or a graphical program that does not appear in menus but is launched in order737

to handle a particular request).738

On a traditional Linux desktop, a graphical program doesn’t generally make a739

distinction between foreground and background operation, though it may watch740

for certain events (input focus, window occlusion) that could be used to monitor741

that status. Some mobile operating systems (Android, iOS) hide the details of742

background operation from the user, some (WebOS, Meego) allow the user to743

interact with background applications more directly.744

The approach will be similar to that of Android and iOS – whether an applica-745

tion (graphical program) is actually running is hidden from the user. The user746

may either launch new applications or press the “back” button to return the747

last running application.748

From the user’s perspective, applications will be persistent. When a user comes749

back to an application they’ve previously used, it will be in the same state they750

left it – even if the vehicle has been turned off and restarted.751

Start752

There are multiple ways in which a program associated with an application753

bundle, whether graphical or not, can be started by Apertis:754

• Direct launch – application bundles may contain an image or widget to be755

displayed in the application launcher, which will launch a suitable graphi-756

cal program. The name and icon shown in the application launcher is part757

of the entry point metadata16.758

• By data type association - The content-type (MIME type) of data is used759

to select the appropriate application to handle the request. Applications760

will provide a list of content-types (if any) that they handle in the en-761

try point metadata17; activating the application with the corresponding762

content type will launch the corresponding graphical program.763

• Sharing back-ends – Applications may define sharing capabilities that al-764

low other applications to launch them and send a receiver-limited amount765

16application-entry-points.md
17application-entry-points.md

22

application-entry-points.md
application-entry-points.md
application-entry-points.md
application-entry-points.md
application-entry-points.md
application-entry-points.md

of data. Again, activating an application in this way would normally start766

a corresponding graphical program.767

• Agents – persistent non GUI processes that provide a background com-768

ponent for applications. These will be launched automatically at boot769

time or immediately after application installation. An application bundle770

will contain at most a single agent, and the [permissions] will include an771

“agent” permission to allow users to know they’re installing an application772

that uses one.773

We refer to the programs that are launched in these ways as entry points.774

Collabora feels that the first three types of launch should be under the control775

of the application manager. See Responsibilities of the application manager776

Another method of launching processes is present – D-Bus activation. If a D-Bus777

client attempts to use a known-name for a service that isn’t currently running,778

D-Bus will search its configuration files for an appropriate handler to launch.779

This sort of activation is more useful for system level developers, and won’t be780

used to launch graphical programs.781

During pre-publication review by the app store, careful attention should be paid782

to application bundles that wish to use agents, and the resource consumption of783

the agents. The concept does not scale – it creates a system where the number784

of installed application bundles can dramatically affect run-time performance785

as well as system boot-up time.786

When a program in an application bundle is started by the application manager,787

in certain circumstances the manager will need to take extra steps. For the first788

launch of a built-in application, or the first launch after one has been updated,789

a subvolume will need to be created for storing user data.790

Background Operation791

More than one graphical program may be running at the same time, but the792

user can only directly interact with a limited number of graphical programs at793

any instant. For example, 1/3 of the screen may be giving driving directions794

while the other 2/3 of the screen displays an e-mail application. Concurrently, in795

the background, a music player may be running while several RSS feed readers796

are periodically updating.797

Background tasks may also be performed by long running agents. Agents run798

for the duration of the user’s session, and are only terminated if the system799

needs to unmount an application’s subvolume - either to shut down the system800

or to upgrade or uninstall the application.801

Graphical programs will be notified with a D-Bus message when they lose focus802

and are relegated to background status – the response to this notification is ap-803

plication dependent. If it has no need to perform processing in the background,804

23

It may save its current state and self-terminate, or it may remain idle until re-805

focused. Some graphical programs will continue to operate in the background806

– for example, a navigation application might remain active in the background807

and continue to give turn-by-turn instructions.808

Graphical programs that need to perform tasks in the background will have to809

set the “background” permission in their [permissions]. Ideally they should be810

designed with a split between foreground and background components (perhaps811

using a graphical program for the user interface and an agent for the background812

part) instead.813

If a background graphical program wishes to be focused, it can use the standard814

method for requesting that a window be brought to the foreground.815

End816

Applications written for Apertis have persistent state, so from a user’s perspec-817

tive they never end. Apertis still needs to be able to terminate applications to818

manage resources, perform user switching, or prepare for shutdown.819

Programs – either graphical or not – may be sent a signal by the middleware at820

any time requesting that they save their state and exit. Even if the application821

bundle has the background permission, its processes may still be signaled to822

save its state in the case of a system shut-down or a user switch.823

To prevent an application that doesn’t respond to the state saving request from824

delaying a system shutdown or interfering with the system’s ability to manage825

memory, processes will be given a limited amount of time (5 seconds) to save826

their state before termination. Applications that don’t need to save state should827

simply exit in response to this signal.828

It should be noted that state saving is difficult to implement, and much of829

the work is the responsibility of the application writer. While Apertis can830

provide functions for handling the incoming signal and storing state data (See831

State saving convenience APIs), the hardest part is determining exactly what832

application state needs to be saved in order for the application to exit and833

restart in exactly the same way it had been previously running.834

There is no standard Linux API for saving application state. POSIX defines835

SIGSTOP and SIGCONT signals for pausing and resuming programs, but these signals836

don’t remove applications from memory or provide any sort of persistence over a837

system restart. Since they’re unblockable by applications, the application may838

be interrupted at any time with no opportunity to do any sort of clean-up.839

However, some applications may react to changes in system state – such as840

network connectivity. One method of preventing applications from reacting to841

D-Bus messages, system state changes, and other signaling is to use SIGSTOP842

to halt an application’s processing. The application becomes responsible for843

24

handling whatever arises after SIGCONT causes it to resume processing (such as a844

flood of events or network timeouts).845

Automatically saving the complete state of an application is essentially impos-846

sible - even if the entire memory contents are saved, the application may have847

open files, or open connections on remote servers, or it may have configured848

hardware like the GPU or a Bluetooth device.849

For a web browser the state might be as simple as a URL and display position850

within the page, and the page will be reloaded and redisplayed when the browser851

is re-launched. However, if the user was in the middle of watching a streaming852

video from a service that requires a log-in, the amount of information that needs853

to be retained is larger and has potential security ramifications.854

It’s possible that a viewer application may exit and the file it was viewing be855

deleted before the application’s next start, making it impossible to completely856

restore the previous application state. Applications will be responsible for han-857

dling such situations gracefully.858

State Saving Convenience APIs859

As state saving is a difficult problem for developers, it seems appropriate for860

Apertis to provide API to assist in performing the task accurately.861

A minimal C language API for state saving could be developed consisting of:862

• A way to register a callback for a D-Bus signal that requests a save of863

state information.864

• Functions to atomically serialize data structures to application storage.865

• Functions to read previously serialized data structures into memory.866

• Functions to clear previously saved state.867

• Documentation and sample code for using the API.868

This API’s usage won’t be mandatory for application developers.869

If it is intended that users have control over which apps save state and which870

merely close on exit, this API could also provide the code to handle those871

configuration options.872

Maemo provided, through libosso18 a very simple state saving API. It expected873

relevant application state be contained within a single contiguous memory re-874

gion, and provided a call that would write out this single memory area to some875

abstract storage area that persists across reboots. On startup, an application876

would attempt to re-read that memory, and if no pre-existing state was present,877

would start over.878

18http://maemo.org/api_refs/5.0/5.0-final/libosso/group__Statesave.html

25

http://maemo.org/api_refs/5.0/5.0-final/libosso/group__Statesave.html
http://maemo.org/api_refs/5.0/5.0-final/libosso/group__Statesave.html

Frozen879

Interest has been expressed in creating a state with less resource consumption880

than background-operation yet still having faster start-up times than ending881

the process and saving state.882

This is a very difficult problem to solve without application intervention – simply883

dumping the memory contents of a process to long term storage won’t be enough884

to restore the application. File descriptors and network connections are tracked885

by the kernel and would need to be re-established on process restart. The886

network connections are especially problematic as the remote end would be887

unaware of what was happening.888

Having applications involved in the process may allow some form of task sus-889

pension that reduces the perceived start-up time of a “frozen” application. In890

response to a signal (presumably over D-Bus) from the application manager, a891

running application could free easily re-created data, close down network con-892

nections and remain dormant until the application manager gave it a signal to893

resume regular operation.894

Resource Usage895

To make better use of the available memory, it’s recommended that applications896

listen to the cgroup notification memory.usage_in_bytes19 and when it gets897

close to the limit for applications, start reducing the size of any caches they898

hold in main memory. It may be good to do this inside the SDK and provide899

applications with a GLib object20 that will notify them.900

In order to reduce the chances that the system will find itself in a situation901

where lack of disk space is problematic, it is recommended that available disk902

space is monitored and applications notified so they can react and modify their903

behavior accordingly. Applications may chose to delete unused files, delete or904

reduce cache files or purge old data from their databases.905

The recommended mechanism for monitoring available disk space is for a dae-906

mon running in the user session to call statvfs (2) periodically on each mount907

point and notify applications with a D-Bus signal. Example code can be found908

in the GNOME project21 which uses a similar approach (polling every 60 sec-909

onds).910

In case applications cannot be trusted to properly delete non-essential files, a911

possibility would be for them to state in their application bundle metadata22912

where such files will be stored, so the system can delete them when needed.913

19http://www.kernel.org/doc/Documentation/cgroups/memory.txt
20https://gitlab.gnome.org/GNOME/glib/merge_requests/1005
21http://git.gnome.org/browse/gnome-settings-daemon/tree/plugins/housekeeping/gsd-

disk-space.c#n693
22application-bundle-metadata.md

26

http://www.kernel.org/doc/Documentation/cgroups/memory.txt
https://gitlab.gnome.org/GNOME/glib/merge_requests/1005
http://git.gnome.org/browse/gnome-settings-daemon/tree/plugins/housekeeping/gsd-disk-space.c#n693
application-bundle-metadata.md
http://www.kernel.org/doc/Documentation/cgroups/memory.txt
https://gitlab.gnome.org/GNOME/glib/merge_requests/1005
http://git.gnome.org/browse/gnome-settings-daemon/tree/plugins/housekeeping/gsd-disk-space.c#n693
http://git.gnome.org/browse/gnome-settings-daemon/tree/plugins/housekeeping/gsd-disk-space.c#n693
application-bundle-metadata.md

In order to make sure that malfunctioning applications cannot cause disruption914

by filling filesystems, it would be required that each application writes to a915

separate filesystem.916

Applications not Written for Apertis917

It may be desirable to run applications (such as Google Earth) that were not918

written for Apertis. These applications won’t understand any custom signals919

or APIs that Apertis provides, providing yet another reason to minimize those920

and stick to upstream solutions as much as possible.921

Non-Apertis applications should be treated as if they have the background per-922

mission – they should not be killed unless the system is extremely low on re-923

sources, or they will provide an inconsistent user experience when they don’t924

save state like a native Apertis application.925

Responsibilities of the Application Manager926

Application life-cycle is dictated by the application manager. When the user927

interacts with an icon or a link, the application manager is responsible for928

launching the appropriate application.929

Collabora recommends that the application manager also be responsible for930

content-type-based (MIME-type-based) launching. The manager could provide931

a D-Bus interface through which it can be asked to launch an appropriate ap-932

plication for a specific content type. A list of available handlers and their933

invocation details would be gathered from the application entry points.934

If multiple applications are capable of handling the same content-types, the935

user may wish to have a way to select which one takes precedence. One pos-936

sible solution is to have the application manager provide a dialog any time an937

ambiguous content-type launch is required, allowing the users to choose their938

preferred handler, with a check-box that can be set to remember the selection.939

This is how the Android operating system handles this situation.940

There are security concerns when allowing content-type-based application941

launching – it can potentially lead to an untrusted source (like a web page)942

being capable of launching a store application with a known security bug.943

Giving the application manager control over content-type-based launches can944

allow it to restrict the usage of content-type-based launching. The manager945

would be able to deny certain applications the ability to launch handlers for946

specific data types (perhaps the web browser should never be allowed to launch947

a handler for a certain data type), filter the handlers available to an application948

to only allow trusted built-in applications to be used, or allow a system upgrade949

to blacklist a store application’s handler while waiting for a fix from a third950

party.951

The application launcher is itself a built-in application, and as such its storage952

27

is governed by system rollbacks. In the event of a system rollback, all of the953

launcher’s settings (icon placement, for example) will be automatically reset to954

the state they were in just prior to the last system upgrade.955

References956

This document references the following external sources of information:957

• XDG Base Directory Specification: http://standards.freedesktop.org/basedir-958

spec-latest.html959

• Apertis System Updates and Rollback design960

• Apertis Multiuser design961

• Apertis Supported API design962

• Apertis Preferences and Persistence design963

• Eastlake 3rd, D. and A. Panitz, “Reserved Top Level DNS Names”,964

BCP 32, RFC 2606, DOI 10.17487/RFC2606, June 1999 (http://www.rfc-965

editor.org/info/rfc2606)966

28

http://standards.freedesktop.org/basedir-spec-latest.html
http://standards.freedesktop.org/basedir-spec-latest.html
http://standards.freedesktop.org/basedir-spec-latest.html
http://www.rfc-editor.org/info/rfc2606
http://www.rfc-editor.org/info/rfc2606
http://www.rfc-editor.org/info/rfc2606

	Traditional package managers are unfit for applications
	Terminology
	Graphical program
	Bundle
	Store account

	Software Categories
	Pre-installed Applications
	Responsibilities of the Application Store
	Identifying applications
	Application Releasing Process
	Application Installation Tracking
	Digital Rights Management
	Permissions

	Data Storage
	Extending Storage Capabilities

	Application Management
	Store Applications
	System Extensions
	License Agreements

	Application Run Time Life-Cycle
	Start
	Background Operation
	End
	Frozen
	Resource Usage
	Applications not Written for Apertis
	Responsibilities of the Application Manager

	References

