
Content hand-over Design issues

Contents1

Design issues for content hand-over 22

Creating new URI schemes (or not) . 23

D-Bus or not? . 24

Can we use GDesktopAppInfo rather than reinventing it? 35

Should Didcot and Canterbury be the same thing? 36

Maintaining established communications 37

Registration mechanism . 38

Security considerations . 49

URI scheme/media-type hijacking 410

Bidirectional content handover 411

Terminating the launched app . 512

Design issues for content hand-over13

Creating new URI schemes (or not)14

The W3C suggests avoiding creation of new URI schemes1 but instead dispatch-15

ing instead on the type of the representation (i.e. the content-type). Creating16

new content-types is substantially easier than it used to be2 and is compatible17

with sending those content-types via http or email.18

data:application/vnd.myapp.myobject,here-is-my-object is one way to pass19

small bits of content-typed data around as URIs, but we should be careful not20

to overuse inline data.21

Ascribing semantics to a subtree of http, like Apple does for [https://developer.22

apple.com/library/ios/featuredarticles/iPhoneURLScheme_Reference/23

MapLinks/MapLinks.html#//apple_ref/doc/uid/TP40007899-CH5-SW1”24

map links] in recent iOS, is another way to avoid new URI schemes.25

D-Bus or not?26

D-Bus has some subtleties for how it interacts with AppArmor: the caller of a27

method, or the sender of a signal, needs permission to send to the recipient (in28

its profile), and the recipient needs permission to receive from the sender (in29

its profile). We are trying to avoid relying on fine-grained message filtering30

(e.g. by interface) because that won’t work on kdbus. This means we might31

have to work out something clever here if we want pairs of arbitrary apps from32

different app-bundles to be able to interact directly: we’d need either some way33

to have “equivalence classes” of apps, or a trusted D-Bus proxy that rate-limits34

and filters messages.35

1http://www.w3.org/TR/webarch/#URI-scheme
2https://www.iana.org/form/media-types

2

http://www.w3.org/TR/webarch/#URI-scheme
https://www.iana.org/form/media-types
data:application/vnd.myapp.myobject,here-is-my-object
https://developer.apple.com/library/ios/featuredarticles/iPhoneURLScheme_Reference/MapLinks/MapLinks.html#//apple_ref/doc/uid/TP40007899-CH5-SW1
https://developer.apple.com/library/ios/featuredarticles/iPhoneURLScheme_Reference/MapLinks/MapLinks.html#//apple_ref/doc/uid/TP40007899-CH5-SW1
https://developer.apple.com/library/ios/featuredarticles/iPhoneURLScheme_Reference/MapLinks/MapLinks.html#//apple_ref/doc/uid/TP40007899-CH5-SW1
https://developer.apple.com/library/ios/featuredarticles/iPhoneURLScheme_Reference/MapLinks/MapLinks.html#//apple_ref/doc/uid/TP40007899-CH5-SW1
https://developer.apple.com/library/ios/featuredarticles/iPhoneURLScheme_Reference/MapLinks/MapLinks.html#//apple_ref/doc/uid/TP40007899-CH5-SW1
http://www.w3.org/TR/webarch/#URI-scheme
https://www.iana.org/form/media-types

Another possibility would be for Didcot (or Canterbury) to proxy autho-36

rized requests between app-bundles; we could have the requester call a37

method on Didcot that results in Didcot calling o.fd.Application.Open or38

o.fd.Application.Activate3 on the provider, if it considers the provider to be39

suitable.40

This is fine for “launch” and “open URI”, but not really up to the job for a41

more complex interface (search-provider-style) or for an interface with more42

data (search results coming back). We could potentially have an API through43

which we fd-pass a socket, or pass through an abstract socket by name, or44

something, and then do D-Bus over that; but then we lose total ordering of45

messages, and become sad.46

In the non-D-Bus corner, we could use a mesh of 1-1 connections between apps;47

but then we have a mesh of 1-1 connections between apps, we’ve still lost total48

ordering, and we potentially need to reinvent message framing.49

smcv’s instinct here is to use D-Bus for everything that is a one-off action in50

response to something the user does; seriously consider using D-Bus for query-51

style APIs; and probably avoid D-Bus for TPEG, since that presumably already52

has framing, and we might end up doing the filtering navigation-app-side.53

Can we use GDesktopAppInfo rather than reinventing it?54

GAppInfo provides nice APIs for the basics of what Didcot does.55

Unfortunately, it assumes that applications can be launched with direct D-Bus56

activation (not true if we are relying on Didcot for launching, unless we have57

additional infrastructure that helps us out) and that they have .desktop files.58

Options:59

• patch GDesktopAppInfo for Apertis60

• write our own high-level API which will end up rather similar (potentially61

even identical), perhaps in its own LGPL-licensed library so it can copy62

bits from GDesktopAppInfo, and optionally patch GLib documentation63

to say not to use GDesktopAppInfo64

• require that every app/agent is DBusActivatable, generate .desktop files65

from their manifests, and use a D-Bus proxy to transform activation re-66

quests into what we need67

• generate .service files so that every app/agent *is* DBusActivatable, use68

a D-Bus proxy or clever AppArmor rules to make that work, and bypass69

Didcot entirely70

Should Didcot and Canterbury be the same thing?71

Canterbury is a trusted intermediary for launching apps. So is Didcot, if you72

think about it. Maybe they should merge?73

3http://standards.freedesktop.org/desktop-entry-spec/1.1/ar01s08.html

3

http://standards.freedesktop.org/desktop-entry-spec/1.1/ar01s08.html
http://standards.freedesktop.org/desktop-entry-spec/1.1/ar01s08.html
http://standards.freedesktop.org/desktop-entry-spec/1.1/ar01s08.html
http://standards.freedesktop.org/desktop-entry-spec/1.1/ar01s08.html

Maintaining established communications74

Do we have a use-case for this, that is not already satisfied by “list providers75

and start querying them again”?76

Registration mechanism77

It looks like we’re going to need:78

• I handle foo: (scheme)79

• I handle everything in foo://bar (scheme + authority)80

• I handle everything starting with foo://bar/baz/ (scheme + authority81

– path-prefix) (?)82

• I open files of type foo/bar83

• I open files of type foo/* (?)84

• I open all files (?)85

• I can share files of type foo/bar, foo/* (?), all files86

and for the streaming-ish use cases:87

• I implement org.apertis.PointOfInterestProvider (etc.)88

This is, not coincidentally, a lot like .desktop files. We could make the encoding89

in the manifest somewhat similar, and auto-generate a .desktop file if desired.90

Something like this (using YAML here because it’s easier to hand-write, apply91

the obvious mapping into JSON for production):92

entry_points: com.example.MyApp: content_types: -93

foo/bar - foo/* url_handler: - "foo:" -94

"foo://bar" - "foo://bar/baz/" com.example.MyAgent: implements:95

- org.apertis.PointOfInterestProvider96

Security considerations97

URI scheme/media-type hijacking98

It is important to note that URI schemes and media types will, in general,99

be a “first come, first served” shared resource. The Scheme Hijacking attack100

described in Unauthorized Cross-App Resource Access on MAC OS X and iOS4101

§3.4 relies on the attacker registering for a URI scheme that an app developer102

had (mis)used as a general IPC mechanism.103

One thing we can do to improve on iOS’ behaviour here is to provide IPC104

mechanisms that automatically convey app and user identity information that105

cannot be faked, such as D-Bus, and document them as a better way to solve106

the problems that iOS app developers are trying to solve by making up URI107

schemes.108

4https://drive.google.com/file/d/0BxxXk1d3yyuZOFlsdkNMSGswSGs/view?pli=1

4

https://drive.google.com/file/d/0BxxXk1d3yyuZOFlsdkNMSGswSGs/view?pli=1
https://drive.google.com/file/d/0BxxXk1d3yyuZOFlsdkNMSGswSGs/view?pli=1

For example, there should be a way for a pair of cooperating applications to109

declare in their app-bundle manifests that each may communicate with the other110

via D-Bus. Executables in the same app-bundle should just be able to do D-Bus111

to each other anyway, no questions asked.112

Documentation for the content handover feature should recommend these other113

IPC mechanisms, and caution against using content handover to transfer cre-114

dentials.115

Bidirectional content handover116

One feature that was considered is bidirectional content handover. We recom-117

mend treating this as out-of-scope: it requires thought to be put into security118

between apps, and in particular what we want to allow apps to do. If general119

bidirectional channels between pairs of apps are required, they should use a120

protocol such as D-Bus or an AF_UNIX socket, which provides secure authen-121

tication (credentials that cannot be faked, including the uid and AppArmor122

profile). ()123

Terminating the launched app124

Suppose app A launches app B via content handover. One design question that125

was considered was whether app A should be able to terminate app B.126

We recommend that this capability is not offered: if it was misused, it would be127

easy for a user to misinterpret it as app B crashing. ()128

5

	Design issues for content hand-over
	Creating new URI schemes (or not)
	D-Bus or not?
	Can we use GDesktopAppInfo rather than reinventing it?
	Should Didcot and Canterbury be the same thing?
	Maintaining established communications
	Registration mechanism
	Security considerations
	URI scheme/media-type hijacking
	Bidirectional content handover
	Terminating the launched app

