
Debug and logging

Contents1

Terminology and concepts . 22

Application bundle . 23

Component . 24

Trusted dealer . 25

Use cases . 36

Debug deterministic application on SDK 37

Debug non-deterministic application on SDK 38

Debug application on target . 39

Debug application in the context of the whole system 310

Extract logs from a device under test 311

Trusted dealer can extract logs from a device post-production . . 312

Third party cannot extract logs from a device post-production . 413

Logging storage space is limited in post-production 414

Record and replay logs for input to an application 415

Record and replay logs for sensors to the whole system 416

Performance profiling . 417

Denial of service attack on logging 418

Private application log file . 519

Non-use-cases . 520

Record and replay logs for entire system behaviour 521

Requirements . 522

Code debugger installable on development and target machines . 523

Code debugger can be used remotely 524

Code record and replay tool installable on development and tar-25

get machines . 526

Application logs available in Eclipse when run on the SDK . . . 627

Whole system logs are aggregated and timestamped 628

Whole system logs are tagged by process and priority 629

Whole system logs are limited by priority and rotated 630

Extract whole system logs from target device 731

Extract whole system logs from target device in post-production 732

Protect access to whole system logs on production devices 733

Code record and replay tool can handle multiple processes 734

Record and replay SDK sensor data 735

Profiling tools installable on development and target machines . 736

Rate limiting of whole system logs 837

Applications can write their own log files 838

Disk usage for each application is limited 839

Existing debug and logging systems 840

Approach . 841

GDB and gdbserver . 842

Record and Replay (rr) . 943

systemd journal . 944

Application log files . 1045

2

Diagnostic log and trace . 1046

Extracting logs from a post-production system 1047

D-Bus monitoring . 1148

Trip logging of SDK sensor data 1149

Security . 1250

Disk usage and performance . 1351

Profiling tools . 1452

Suggested roadmap . 1453

Requirements . 1454

Open questions . 1555

Summary of recommendations . 1556

This documents several approaches to debugging components of an Apertis sys-57

tem, either during development, or in the field. This includes debugging tools58

for reproducing and analysing problems; and logging systems for gathering data59

about problems and about system behaviour.60

The major considerations with a debugging and logging system are:61

• Reproducibility: Many of the hardest problems to diagnose are ones which62

are hard to reproduce. A set of debugging tools should make it easy to re-63

produce problems, and certainly should not make the problems disappear64

when being debugged.65

• Timing: An important part of ensuring that problems are reproducible is66

ensuring that timing effects are reproducible, which means that a debug-67

ging system must have a low (almost zero) overhead, in order to avoid68

disturbing timing effects. Secondarily to this, it must allow the developer69

to see the order in which events occurred during the course of a problem.70

• Context: As well as helping reproducibility of a problem, a debugging71

system should reduce the need to reproduce the problem in the first place72

— by capturing as much contextual information about it on the initial73

attempt at debugging.74

• Confidentiality: Any system which logs information about a running sys-75

tem must ensure that the logged data remains confidential apart from to76

developers who need it for debugging. This may mean that logging is not77

enablable on production systems.78

Terminology and concepts79

Application bundle80

An application bundle is a group of functionally related components (services,81

data or programs) installed as a unit. This matches the sense with which ‘app’82

is typically used on mobile platforms such as Android and iOS. (See the Appli-83

cations design document for the full definition.)84

3

Component85

An application bundle or system service.86

Trusted dealer87

An authorised vehicle dealer, garage or other sale or repair location which has88

a business relationship with the vehicle manufacturer.89

Use cases90

A variety of use cases for scenarios where a component needs debugging, or where91

logging data are needed, are given below. Particularly important discussion92

points are highlighted at the bottom of each use case.93

Some of these cases may be already solved in the Apertis distribution in its94

current state. However, they will all have an effect, to a greater or lesser extent,95

on this design.96

Debug deterministic application on SDK97

An application developer needs to be able to debug their application when98

running it on the SDK, diagnosing crashes and looking at log output for that99

particular application.100

Debug non-deterministic application on SDK101

An application developer is working on an application whose behaviour appears102

non-deterministic (for example, due to using a lot of threads, or depending on103

sensitive timing). They manage to reproduce a particular bug only occasionally,104

but need to debug it further.105

Debug application on target106

An application developer needs to be able to debug their application when run-107

ning it on the target device (connected to an SDK machine during development),108

diagnosing crashes and looking at log output for that particular application.109

Debug application in the context of the whole system110

An application developer has a problem with their application which is depen-111

dent on the state of the whole (integrated) target system, rather than just on112

internal state in their application. They need to be able to correlate system113

state with their application’s internal state.114

4

Extract logs from a device under test115

An Apertis tester has observed a failure in a development vehicle while doing116

field testing on it. They need to be able to extract logs from the vehicle after117

the event, and examine them offline to diagnose the failure.118

Trusted dealer can extract logs from a device post-production119

A vehicle owner has brought their vehicle into the garage with a failure in the120

IVI system. The trusted dealer at the garage extracts logs from the vehicle and121

passes them to the vehicle vendor for analysis, potentially leading to a fix for122

the problem in a subsequent release of the CE domain operating system for that123

vehicle.124

Third party cannot extract logs from a device post-production125

A vehicle owner likes to tinker with their vehicle, and would like to look at the126

logs which their trusted dealer can look at, in order to get more information127

about reverse engineering the IVI system in their vehicle.128

They must not be able to access these logs.129

Logging storage space is limited in post-production130

On a production vehicle, the amount of storage space available for logging is131

limited, so the system should log only the most important or recent and relevant132

messages, and not write other messages to persistent storage.133

Record and replay logs for input to an application134

An application developer has found a problem in their application which depends135

on external input to it, and subtle timing sequences of that input. The input136

includes sensor input (from the SDK API, over D-Bus), and user interactions137

with the interface using the touchscreen and on-screen keyboard. This makes it138

a hard problem to reproduce. They want to add a regression test for it to their139

application, and want to automate it because reproducing the problem manually140

is too hard. This regression test needs to perfectly reproduce the problem each141

time it is run.142

The application has more than one process (it has one or more agent processes,143

in addition to the main UI); all the processes communicate with each other at144

runtime.145

Record and replay logs for sensors to the whole system146

An Apertis tester wants to test the whole system against a variety of road trips,147

but it would be a waste of time to repeatedly drive a vehicle around a real road148

system in order to do repeat test runs. They want a replayable log file of all149

the sensor inputs from the vehicle, which can be replayed to the whole Apertis150

5

system on a development machine, to allow repeated testing of how the system151

responds to those inputs.152

Performance profiling153

An application is performing poorly on the target device, and the developer154

wants to diagnose the problem so they can fix it.155

Denial of service attack on logging156

A misbehaving or malicious application is submitting log messages as fast as it157

can. This should not adversely affect system performance, or cause other log158

messages to be prematurely dropped.159

Private application log file160

An application is being ported from another platform to Apertis, and it already161

has its own logging infrastructure, storing log messages in a private log file.162

The developers wish to keep this infrastructure, rather than (or as well as)163

integrating with the Apertis logging infrastructure.164

Non-use-cases165

Record and replay logs for entire system behaviour166

While [this use case][Record and replay logs for sensors to the whole system] is167

legitimate, it becomes harder to record the entire system behaviour (as opposed168

to just the inputs from the sensor system), as that starts to be affected by169

differences in the components which are being tested if those components are170

changed to test new features. For example, if the entire system behaviour were171

recorded and replayed, it might not be possible to run a debugger on the system172

while replaying a log, as the debugger would impact the replay state too much.173

Requirements174

Code debugger installable on development and target machines175

A code debugger must be available in Apertis, and installable on development176

and target machines so that it can be used by Apertis and application develop-177

ers.178

The tool must allow interactive walking through the stack, printing expressions,179

and other common C debugging functions.180

See Debug deterministic application on SDK.181

6

Code debugger can be used remotely182

The code debugger must be usable remotely in real time, most likely with a183

server component running on the target device, and a client component on the184

developer’s machine.185

See Debug application on target.186

Code record and replay tool installable on development and target187

machines188

A code record and replay tool must be available in Apertis, and installable189

on development and target machines so that it can be used by Apertis and190

application developers.191

The tool must allow recording all inputs to an Application from the kernel, plus192

any other system behaviour which would influence the application’s behaviour.193

Those logs must be stored as files, and replayable many times.194

When replaying logs, the developer must be able to use a debugger to investigate195

problems.196

See:197

• Debug non-deterministic application on SDK198

• Debug application in the context of the whole system199

• Record and replay logs for input to an application200

Application logs available in Eclipse when run on the SDK201

When developing an application in Eclipse, the logging calls the application uses202

must send their output to the Eclipse console (i.e. stdout or stderr) rather than203

(or as well as) the SDK system’s journal. This allows the developer to easily204

read those messages.205

See Debug deterministic application on SDK.206

Whole system logs are aggregated and timestamped207

All log messages from all system components and services must be directed to208

a central logging repository, which must timestamp them all in order (so that209

all the timestamps are directly comparable).210

See Extract logs from a device under test, Debug application in the context of211

the whole system.212

Whole system logs are tagged by process and priority213

All log messages from all system components and services must be tagged with214

the name of the process which generated them, and their priority (for example,215

7

‘debug’ versus ‘warning’ versus ‘error’). This metadata must be available to the216

developer to allow them to filter logs for relevant messages.217

See:218

• Debug deterministic application on SDK219

• Debug application on target220

Whole system logs are limited by priority and rotated221

On a production vehicle, the log messages which are written to persistent storage222

must be limited to only the most recent logs (according to some age cutoff) and223

the most important logs (according to some priority cutoff). These cutoffs must224

be configurable at production time.225

It may be possible to keep all other log messages in memory while the vehicle226

is running, for example to allow them to be uploaded to an online diagnosis227

service in case of a fault. They must not, however, be written to disk.228

See Logging storage space is limited in post-production.229

Extract whole system logs from target device230

The aggregated system log on a development target device must be accessible231

by the developer, who must be able to copy it to their development machine232

for analysis. The log does not necessarily have to be extractable in real time,233

though that would be helpful.234

See Extract logs from a device under test.235

Extract whole system logs from target device in post-production236

The aggregated system log on a production target device must be extractable237

by a trusted dealer so that It can be sent to an Apertis developer for analysis.238

Extracting the log may require physical access to the vehicle.239

See Trusted dealer can extract logs from a device post-production.240

Protect access to whole system logs on production devices241

The aggregated system log on a production device must only be extractable by242

a trusted dealer or other authorised representative of the vehicle manufacturer.243

See Third-party cannot extract logs from a device post-production.244

Code record and replay tool can handle multiple processes245

The code record and replay tool must be able to record and replay a single log246

for multiple processes, such as an application and its agents. They must all see247

the same timing information.248

8

See Record and replay logs for input to an application.249

Record and replay SDK sensor data250

It must be possible to record all D-Bus traffic to and from the SDK sensors API251

for a given time period (a ‘trip’), and later replay that log to the whole system252

instead of using current sensor data.253

See Record and replay logs for sensors to the whole system.254

Profiling tools installable on development and target machines255

A variety of profiling tools must be available in Apertis, and installable on256

development and target machines so that they can be used by Apertis and257

application developers.258

See Performance profiling.259

Rate limiting of whole system logs260

To prevent denial of service attacks on the system log, rate limiting must be261

applied to log message submissions from each application. If an application262

submits log messages at too high a rate, the extras must be dropped.263

See Denial of service attack on logging.264

Applications can write their own log files265

Application developers may choose to ignore or supplement the Apertis SDK266

logging infrastructure with their own system which writes to a log file in their267

application’s storage space. This must be permitted, although the SDK does268

not have to provide convenience API for it.269

See Private application log file.270

Disk usage for each application is limited271

An application is logging to its own private log file, rather than the system272

journal. The system must constrain the amount of disk space the application273

can use, so that it cannot prevent other applications from working by consuming274

all free disk space. If the application consumes too much disk space, the system275

may delete its files or prevent it from working.276

See Private application log file.277

Existing debug and logging systems278

Open question: What existing debug and logging systems are relevant to do279

background research on?280

9

Approach281

Based on the above research (section 6) and requirements (section 5), we rec-282

ommend the following approach as an initial sketch of a debug and logging283

system.284

GDB and gdbserver285

For real-time debugging of applications, both on a local SDK system and on286

a remote target system, GDB should be used. For debugging remote systems,287

gdbserver should be set up on the remote system and GDB used as a client to288

control it.289

They must both be available in the development repository, and hence installable290

on development and target devices.291

Record and Replay (rr)292

For debugging of non-deterministic problems and problems which depend on293

context or state outside of the application, Mozilla’s Record and Replay (rr)294

tool should be used. It works by recording all input and output to a process295

(especially the input and output via kernel APIs), and allowing that log to be296

replayed while re-running the application. This eliminates all sources of non-297

determinism in the replay, ensuring that the conditions which triggered the298

original problem can be reproduced every time.299

Crucially, rr works with D-Bus: as all socket input and output for an application300

is recorded, this includes all D-Bus traffic — this is reproduced faithfully in any301

re-runs of the application. As many of the Apertis SDK APIs are provided via302

D-Bus, this is a crucial feature.303

In addition, rr can record a group of processes to a single log, and replay to the304

same group later on. This can be used for debugging an application together305

with its agents, for example.306

Note, however, that rr is a replay tool and not an interactive debugger — a de-307

veloper cannot replay a log recorded against one version of an application with a308

newer version of the application (for example, with changes which the developer309

hopes will fix the bug they’re investigating). This is because it would change310

the program’s output behaviour and hence its effects on external processes.311

For example, consider a bug where a program is writing a network packet to312

the wrong socket out of two it has open. rr has recorded the response from the313

socket the program was originally sending to (the wrong socket) — when a fixed314

version of the program is run, the log file rr is using will not have a response315

stored for the second (correct) socket.316

This must be available in the development repository, and hence installable on317

development and target devices.318

10

systemd journal319

All log output from processes on the target system should be sent to the systemd320

journal, allowing it to provide a single source of log data for the entire system,321

with all log messages in a single ordering. This includes debug messages, errors,322

warnings, and other log output. All messages should be sent with a priority323

level, plus additional metadata if relevant. The journal automatically adds the324

sending process’ name to log entries.325

When developing on a local SDK system, the log should be queried using the326

journalctl command line tool.327

If a program is run manually from a console, or from within Eclipse, all log328

output must also be sent to stdout or stderr so that it appears on the console329

or the Eclipse console1.330

Application log files331

If an application developer chooses to log their application’s messages to a pri-332

vate log file instead of, or as well as, to the systemd journal, this is permitted.333

The SDK may not provide convenience APIs for doing this, other than its APIs334

for file input and output. For example, it is up to the application developer to335

implement rate limiting, log file rotation and vacuuming.336

Applications must not be able to consume all available disk space and prevent337

the system or other applications from working. The safety measures to prevent338

this are detailed in the Robustness design document, and primarily involve339

putting each application’s storage area in a separate file system.340

Applications may only write to their own log files if they have permission to341

write to persistent storage, which is one of the standard permissions in the342

application manifest.343

Diagnostic log and trace344

When testing a component on a target system, the developer should use diag-345

nostic log and trace (DLT) from GENIVI — this is a client–server system where346

the DLT daemon runs on the target system and forwards systemd journal mes-347

sages over the network to the developer’s system, where they are presented in348

the DLT Viewer UI, which allows filtering, ordering, and other analysis to be349

performed on the logs.350

However, DLT is only as useful as the log messages sent to it by the components351

on the system. Certain components may need to be modified to emit more log352

messages.353

The DLT daemon exposes itself on the network and on the serial port with no354

authentication, so must not be installed by default on production systems.355

1https://git.gnome.org/browse/libgsystem/tree/src/gsystem-log.c#n128

11

https://git.gnome.org/browse/libgsystem/tree/src/gsystem-log.c#n128
https://git.gnome.org/browse/libgsystem/tree/src/gsystem-log.c#n128

Extracting logs from a post-production system356

For extracting logs from a post-production system, a new journal export service357

must be written which provides and authenticates access to the systemd journal.358

This service would essentially run the journalctl -o export2 command to retrieve359

a full copy of the system’s logs in a stable format suitable for sending to another360

system for review.361

The service would need to listen on some external interface which a trusted362

dealer could connect to. This could, for example, be a network port; or it could363

be a physical connector on the IVI system’s main board. In any case, the service364

must require authentication before exporting any logs.365

Open question: What external interface can the journal export service listen366

on?367

The authentication mechanism chosen depends partially on the characteristics of368

the interface the service listens on. It would most likely be a challenge–response369

protocol3 issued by the journal export service, where the trusted dealer proves370

knowledge of a secret which has been issued by the vehicle manufacturer.371

Open question: Should the logs be exported in an encrypted form, to keep372

them confidential while being stored by a trusted dealer?373

D-Bus monitoring374

As many of the Apertis SDK APIs are provided via D-Bus, an easy way to see375

what they’re doing is to log all D-Bus traffic on the system and session buses.376

This can then be exposed by the DLT Viewer (or the local journalctl tool) and377

analysed.378

A new D-Bus logging service (similar to the dbus-monitor tool, but presented379

as a systemd service which is enablable by developers, and only on development380

images) should be written which logs all traffic for a specified D-Bus bus to the381

systemd journal.382

Note that this does not allow for log replay. For specific cases, this will be383

handled using Trip logging of SDK sensor data.384

Trip logging of SDK sensor data385

In order to record ‘trip logs’ of the sensor data sent to and from the SDK386

sensor API and the entirety of the rest of the system, a D-Bus record and387

replay tool should be written. When recording, this could monitor the D-Bus388

session bus and record all traffic to and from the sensor API. When replaying, it389

would replace the SDK sensor service on the bus, and impersonate all its APIs,390

replaying responses from the log. This program must be aware of the semantics391

2http://www.freedesktop.org/wiki/Software/systemd/export/
3https://en.wikipedia.org/wiki/Challenge%E2%80%93response_authentication

12

http://www.freedesktop.org/wiki/Software/systemd/export/
https://en.wikipedia.org/wiki/Challenge%E2%80%93response_authentication
https://en.wikipedia.org/wiki/Challenge%E2%80%93response_authentication
https://en.wikipedia.org/wiki/Challenge%E2%80%93response_authentication
http://www.freedesktop.org/wiki/Software/systemd/export/
https://en.wikipedia.org/wiki/Challenge%E2%80%93response_authentication

of D-Bus messages so, for example, it would not store the serial number of a392

message reply, but would instead use the serial number corresponding to the393

method call at the time of replay. Similarly, it must be aware of common D-Bus394

interfaces such as org.freedesktop.DBus.Properties and know that the value of395

a property remains unchanged unless a notification signal has been emitted for396

it.397

One implementation option would be to implement this based on the dbus-398

monitor code: log all messages to or from the sensors API, and extract ones399

with known semantics, such as org.freedesktop.DBus.Properties method calls400

and signals. The replay code would maintain a queue of pairs of (expected401

method call, reply), and for each incoming method call, would return and remove402

the first matching reply from the queue; or would return an error otherwise.403

For calls to known interfaces like org.freedesktop.DBus.Properties, the property404

state would be emulated with the correct semantics. Asynchronous events, such405

as signal emissions from the sensors API, would be emitted at the appropriate406

time relative to their surrounding events, rather than based on the absolute407

timestamp they were originally logged at. For example, if the log contained408

a signal emission after method call A and before method reply B, that signal409

would only be emitted in the replayed log after the program under test had410

made method call A.411

An alternative implementation, which would be faster to implement but less412

generic and hence could not be repurposed for logging other SDK services in413

future, would be to use python-dbusmock4 to build a specific mock service414

for the sensors API. This service would have full knowledge of the semantics415

of all the D-Bus messages it sent and received — the full sensors SDK API,416

rather than just the standard D-Bus interfaces. The log file would be generated417

similarly to in the first implementation — by monitoring and interpreting the418

D-Bus traffic for the sensors API. The file would contain an initial set of values419

for the properties of all the sensors, followed by timestamped updates to each420

value as it changed during logging.421

A third, most-specific, implementation option, is to use the emulator backend422

service for the vehicle device daemon (See the Sensors and Actuators design),423

and feed the recorded trip logs to it. This has the advantage of re-using the424

vehicle device daemon’s SDK API, without having to mock it up. The emulator425

backend service has to be written anyway, in order to implement the sensors426

and actuators emulator (see section 8.4 of the Sensors and Actuators design,427

version 0.3.0). This would be the fastest implementation option, and the least428

re-usable.429

Example trip files430

To give application developers some baseline situations to test against, it would431

be helpful if Apertis or OEM variants of it shipped with several example trip432

4https://github.com/martinpitt/python-dbusmock

13

https://github.com/martinpitt/python-dbusmock
https://github.com/martinpitt/python-dbusmock

logs, demonstrating some common or uncommon driving situations which appli-433

cations must handle.434

Open question: Should example trip files be produced by Apertis, or by OEMs435

so they are specific to vehicles?436

Security437

The security issues from logging are all concerned with confidentiality of system438

information, which may include sensitive data from a variety of processes.439

This data must be kept confidential, both within the system (for example, ap-440

plications must not have access to the logs of any process which is not in their441

trust domain), and from external attackers.442

On production devices, especially, access to full system logs is a valuable goal443

for an attacker, as it gives insight into how the system is configured and further444

potential attack targets. For this reason, it may be worthwhile considering445

whether to reduce or disable logging on production systems.446

Conversely, log entries from production devices are very useful for debugging447

unreproduceable post-production problems. Therefore, the choice of logging448

verbosity on production systems becomes a trade-off between the risk of confi-449

dentiality breaches, and the practicality of being able to debug problems.450

Open question: What level of logging should be enabled for production sys-451

tems versus development systems?452

Disk usage and performance453

Storing log entries persistently consumes an unbounded amount of disk space.454

A limit must be applied to the number or age of log entries which are stored455

before being dropped. The systemd journal must have a disk space or age limit456

applied; this can be done by editing /etc/systemd/journald.conf and adding the457

following, for example:458

SystemMaxUse=100M459

To limit the priority level of messages which are stored to disk, the following460

configuration option can be used; it is highly recommended to set it to ‘debug’461

on development systems and ‘error’ for production systems.462

The full range of options is documented in man 5 journald.conf463

MaxLevelStore=error464

Logging must not have a large runtime overhead — each call from a process to465

the logging API must be fast. Furthermore, rate limiting must be applied to466

prevent a misbehaving application from overfilling the system logs. This can467

be achieved using the following configuration options for the systemd journal;468

14

the following values limit each process to at most 1000 messages in a given 30469

seconds:470

RateLimitInterval=30s471

RateLimitBurst=1000472

As discussed in the Robustness design, the journal should additionally be config-473

ured to leave an amount of free space smaller than the reserved blocks of the file474

system containing the log files, so that log messages can continue to be written475

in low disk space conditions, allowing easier diagnosis of the problem:476

SystemKeepFree=5%477

Profiling tools478

A variety of profiling tools should be packaged for the Apertis development479

repository:480

• perf481

• valgrind482

• google-perftools483

• strace484

• ltrace485

• systemtap486

• gprof487

1.488

Suggested roadmap489

GDB and DLT are already packaged, so no further work is needed there; as are490

all the profiling tools.491

rr is not yet packaged, but should be.492

Integration of everything into the systemd journal, plus adding additional debug493

messages to various system services to improve debuggability of those services.494

The journal export service, D-Bus logging service and D-Bus record and replay495

tools are all self-contained, so could be produced individually as later stages in496

the implementation.497

Requirements498

• Code debugger installable on development and target machines: GDB is499

the debugger.500

• Code debugger can be used remotely: GDB can be used with gdbserver.501

15

• Code record and replay tool installable on development and target ma-502

chines: rr is the record and replay tool.503

• Application logs available in Eclipse when run on the SDK: Outputting504

log entries to stdout or stderr if running on a console.505

• Whole system logs are aggregated and timestamped: All system logs are506

forwarded to the systemd journal. D-Bus messages are logged to the507

journal via a new D-Bus logging service.508

• Whole system logs are tagged by process and priority: Done by the sys-509

temd journal by default.510

• Whole system logs are limited by priority and rotated: Done with suitable511

configuration of the systemd journal.512

• Extract whole system logs from target device: DLT is used to extract logs513

and transfer them to a developer machine in real time.514

• Extract whole system logs from target device in post-production New515

journal export service exposing an authenticated interface for exporting516

systemd journal logs.517

• Protect access to whole system logs on production devices: Journal export518

service requires authentication.519

• Code record and replay tool can handle multiple processes: rr supports520

logging and replaying to multiple processes.521

• Record and replay SDK sensor data: D-Bus record and replay tool will be522

used for this.523

• Profiling tools installable on development and target machines: Various524

profiling tools will be packaged.525

• Rate limiting of whole system logs: Done with suitable configuration of526

the systemd journal.527

• Applications can write their own log files: Allowed for any application528

which is allowed to write files.529

• Disk usage for each application is limited: Each application writes to its530

own file system as in the Robustness design.531

Open questions532

• What existing debug and logging systems are relevant to do background533

research on?534

• What external interface can the journal export service listen on?535

• Should the logs be exported in an encrypted form, to keep them confiden-536

tial while being stored by a trusted dealer?537

16

• Should example trip files be produced by Apertis, or by OEMs so they are538

specific to vehicles?539

• What level of logging should be enabled for production systems versus540

development systems?541

Summary of recommendations542

As discussed in the above sections, we recommend:543

• Packaging Mozilla’s Record and Replay (rr) tool for the development544

repository.545

• Ensure that all system components and services are logging exclusively to546

the systemd journal.547

• Configure the systemd journal to handle log expiry, rotation and priority548

storage levels to avoid consuming unbounded disk space.549

• Potentially add more debug log messages to various system services to550

give more context when debugging applications.551

• Write a journal export service for exporting the systemd journal with552

authentication from a production system.553

• Write a D-Bus logging service for logging all D-Bus traffic to the systemd554

journal to give more context when debugging applications.555

• Write a D-Bus record and replay tool for producing trip logs from the556

SDK sensor API.557

• Audit the confidentiality of the systemd journal and ensure it is only558

accessible to developers and the journal export service.559

• Write documentation on how to use the Apertis SDK logging API, and560

advice for application developers who want to use their own logging sys-561

tems.562

17

	Terminology and concepts
	Application bundle
	Component
	Trusted dealer

	Use cases
	Debug deterministic application on SDK
	Debug non-deterministic application on SDK
	Debug application on target
	Debug application in the context of the whole system
	Extract logs from a device under test
	Trusted dealer can extract logs from a device post-production
	Third party cannot extract logs from a device post-production
	Logging storage space is limited in post-production
	Record and replay logs for input to an application
	Record and replay logs for sensors to the whole system
	Performance profiling
	Denial of service attack on logging
	Private application log file

	Non-use-cases
	Record and replay logs for entire system behaviour

	Requirements
	Code debugger installable on development and target machines
	Code debugger can be used remotely
	Code record and replay tool installable on development and target machines
	Application logs available in Eclipse when run on the SDK
	Whole system logs are aggregated and timestamped
	Whole system logs are tagged by process and priority
	Whole system logs are limited by priority and rotated
	Extract whole system logs from target device
	Extract whole system logs from target device in post-production
	Protect access to whole system logs on production devices
	Code record and replay tool can handle multiple processes
	Record and replay SDK sensor data
	Profiling tools installable on development and target machines
	Rate limiting of whole system logs
	Applications can write their own log files
	Disk usage for each application is limited

	Existing debug and logging systems
	Approach
	GDB and gdbserver
	Record and Replay (rr)
	systemd journal
	Application log files
	Diagnostic log and trace
	Extracting logs from a post-production system
	D-Bus monitoring
	Trip logging of SDK sensor data
	Security
	Disk usage and performance
	Profiling tools
	Suggested roadmap
	Requirements

	Open questions
	Summary of recommendations

