
Multimedia

Contents1

Requirements . 22

Hardware-accelerated media rendering 23

Multimedia Framework . 24

Progressive download and buffered playback 35

Distributed playback support . 36

Camera display on boot . 37

Video playback on boot . 38

Camera widget . 39

Transcoding . 410

DVD playback . 411

Traffic control . 412

Solutions . 513

Multimedia Framework . 514

Hardware-accelerated Media Rendering 515

Buffering playback in GStreamer and clutter-gst 616

Distributed playback . 717

Camera and Video display on boot 718

Camera widget and clutter-gst 819

Transcoding . 920

DVD playback . 921

Traffic control . 922

This document covers the various requirements for multimedia handling in the23

Apertis platform.24

The FreeScale I.MX/6 platform provides several IP blocks offering low-power25

and hardware-accelerated features:26

• GPU : For display and 3D transformation/processing27

• VPU : For decoding and encoding video streams28

The Apertis platform will provide robust and novel end-user features by getting29

the most out of those hardware components. However, in order to retain power30

efficiency, care must be taken in the way those components are exposed to31

applications running on the platform.32

The proposed solutions outlined in this document have also been chosen for33

the Apertis platform to re-use as many “upstream” open-source solutions as34

possible, to minimize the maintenance costs for future projects based upon35

Apertis.36

Requirements37

Hardware-accelerated media rendering38

The Apertis system will need to make usage of the underlying GPU/VPU hard-39

ware acceleration in various situations, mainly:40

2

• Zero copy of data between the VPU decoding system and the GPU display41

system42

• Be usable in WebKit and with the Clutter toolkit43

• Integration with FreeScale and ADIT technologies44

Multimedia Framework45

In a system like Apertis, writing a wide array of applications and end-user46

features offering multimedia capabilities requires a framework which will offer47

the following features:48

• Handle a wide variety of use-cases (playback, recording, communication,49

network capabilities)50

• Support multiple audio, video and container formats51

• Capability to add new features without having to modify existing applica-52

tions53

• Capability to handle hardware features with as little overhead as possible54

• Widely adopted by a variety of libraries, applications and systems55

In addition, this system needs to be able to handle the requirements specified56

in Hardware accelerated media rendering.57

Progressive download and buffered playback58

The various network streams played back by the selected technology will need59

to provide buffering support based on the playback speed and the available60

bandwith.61

If possible a progressive download strategy should be used, using such a strategy62

the network media file is temporarily stored locally and playback starts when it63

is expected the media can be played back without a need to pause for further64

buffering. Or in other words, playback starts when the remaining time to finish65

the download is less then the playback time of the media.66

For live media where progressive downloading is not possible (e.g. internet67

radio) a limited amount of buffering should be provided to offset the effect of68

temporary jitter in the available bandwidth.69

Apart from the various buffering strategies, the usage of adapative bitrate70

streaming technologies such as HLS or MPEG-DASH is recommended if avail-71

able to continuously adapt playback to the current network conditions.72

Distributed playback support73

The Apertis platform wishes to be able to share playback between multiple74

endpoints. Any endpoint would be able to watch the same media that another75

3

is watching with perfect synchronization.76

Camera display on boot77

Apertis requires the capability to show camera output during boot, for example78

to have rear camera view for parking quickly. Ideally, the implementation of79

this feature must not affect the total boot time of the system.80

Video playback on boot81

Apertis requires the capability to show a video playback during boot. This82

shares some points with the section Camera display on boot regarding the re-83

quirements, the implementation, and risks and concerns. Collabora has some84

freedom here to restrict the fps, codecs, resolutions, quality of the video to be85

playback in order to be able to match the requirements.86

Camera widget87

Apertis requires that a camera widget that can be embedded to applications to88

easily display/manipulate camera streams is provided. The widget should offer89

the following features:90

• Retrieve the list of supported camera devices and ability to change the91

active device92

• Support retrieving and updating color balance (saturation, hue, bright-93

ness, contrast), gamma correction and device capture resolution94

• Provides an interface for image processing95

• Record videos and take pictures96

Transcoding97

Transcoding can be loosely described as decoding, optionally processing and re-98

encoding of media data (video, audio, …) possibly from one container format to99

another. As a requirement for Apertis, transcoding must be supported by the100

Multimedia Framework.101

DVD playback102

Most DVDs are encrypted using a system called CSS1 (content scrambling sys-103

tem), that is designed to prevent unauthorized machines from playing DVDs.104

CSS is licensed by the DVD Copy Control Association (DVD CCA), and a CSS105

license is required to use the technology, including distributing CSS enabled106

DVD products.107

1http://www.dvdcca.org/css.aspx

4

http://www.dvdcca.org/css.aspx
http://www.dvdcca.org/css.aspx

Apertis wishes to have a legal solution for DVD playback available on the plat-108

form.109

Traffic control110

Traffic control is a technique to control network traffic in order to optimize or111

guarantee performance, low-latency, and/or bandwidth. This includes deciding112

which packets to accept at what rate in an input interface and determining113

which packets to transmit in what order at what rate on an output interface.114

By default traffic control on Linux consists of a single queue which collects115

entering packets and dequeues them as quickly as the underlying device can116

accept them.117

In order to ensure that multimedia applications have enough bandwidth for118

media streaming playback without interruption when possible, Apertis requires119

that a mechanism for traffic control is available on the platform.120

Solutions121

Multimedia Framework122

Based on the requirements, we propose selection of the GStreamer mul-123

timedia framework2, a LGPL-licensed framework covering all of the required124

features.125

The GStreamer framework, created in 1999, is now the de-facto multimedia126

framework on GNU/Linux systems. Cross-platform, it is the multimedia back-127

bone for a wide variety of use-cases and platforms, ranging from voice-over-128

IP communication on low-power handsets to transcoding/broadcasting server129

farms.130

Its modularity, through the usage of plugins, allows integrators to re-use all the131

existing features (like parsers, container format handling, network protocols,132

and more) and re-use their own IP (whether software or hardware based).133

Finally, the existing eco-system of application and libraries supporting134

GStreamer allows Apertis to benefit from those where needed, and benefit135

from their on-going improvements. This includes the WebKit browser, and the136

Clutter toolkit.137

The new GStreamer 1.0 series will be used for Apertis. In its 6 years138

of existence, the previous 0.10 series exhibited certain performance bottlenecks139

that could not be solved cleanly due to the impossibility of breaking API/ABI140

compatibility. The 1.0 series takes advantage of the opportunity to fix the141

bottlenecks through API/ABI breaks, so Apertis will be in a great position to142

have a clean start.143

2http://gstreamer.freedesktop.org/

5

http://gstreamer.freedesktop.org/
http://gstreamer.freedesktop.org/
http://gstreamer.freedesktop.org/
http://gstreamer.freedesktop.org/

Amongst the new features the 1.0 series brings, the most important one is related144

to how memory is handled between the various plugins. This is vital to support145

the most efficient processing paths between plugins, including first-class support146

for zero-copy data passing between hardware decoders and display systems.147

Several3 presentations4 are available detailing in depth the changes in the148

GStreamer 1.0 series.149

Hardware-accelerated Media Rendering150

The current set of GStreamer plugins as delivered by Freescale targets the151

Gstreamer 0.10 series, for usage with GStreamer 1.0 these plugins will need152

to be updated.153

As freescale was not able to deliver an updated set of plugins in a reasonable154

timeframe Collabora has done a initial proof of concept port of the VPU plugins155

to Gstreamer 1.0 allowing ongoing development of the middleware stack to focus156

purely on Gstreamer 1.0.157

Eventually it is expected that freescale will deliver an updated set of VPU158

plugins for usage with Gstreamer 1.0.159

to benefit as much as possible from improvements provided by the “upstream”160

GStreamer in the future, it is recommend need to ensure that the platform-161

specific development is limited to features specific to that platform.162

Therefore it is recommended for the updated VPU plugins to be based on exist-163

ing base video decoding/encoding classes (See GstBaseVideoDecoder5, GstBa-164

seVideoEncoder6). This will ensure that:165

• The update plugins will benefit from any improvements done in those base166

classes and future adjustments to ensure proper communication between167

decoder/encoder elements and other elements (like display and capture168

elements).169

• The updated plugins will benefit from commonly expected behaviors of170

decoders and encoders in a wide variety of use-cases (and not just local file171

playback) like QoS (Quality of Service), low-latency and proper memory172

management.173

3http://video.linux.com/videos/gstreamer-10-no-longer-compromise-flexibility-for-
performance

4http://gstconf.ubicast.tv/videos/keynote-gstreamer10/
5http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-bad-libs/html/

gst-plugins-bad-libs-GstBaseVideoDecoder.html
6http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-bad-libs/html/

gst-plugins-bad-libs-GstBaseVideoEncoder.html

6

http://video.linux.com/videos/gstreamer-10-no-longer-compromise-flexibility-for-performance
http://gstconf.ubicast.tv/videos/keynote-gstreamer10/
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-bad-libs/html/gst-plugins-bad-libs-GstBaseVideoDecoder.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-bad-libs/html/gst-plugins-bad-libs-GstBaseVideoEncoder.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-bad-libs/html/gst-plugins-bad-libs-GstBaseVideoEncoder.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-bad-libs/html/gst-plugins-bad-libs-GstBaseVideoEncoder.html
http://video.linux.com/videos/gstreamer-10-no-longer-compromise-flexibility-for-performance
http://video.linux.com/videos/gstreamer-10-no-longer-compromise-flexibility-for-performance
http://gstconf.ubicast.tv/videos/keynote-gstreamer10/
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-bad-libs/html/gst-plugins-bad-libs-GstBaseVideoDecoder.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-bad-libs/html/gst-plugins-bad-libs-GstBaseVideoDecoder.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-bad-libs/html/gst-plugins-bad-libs-GstBaseVideoEncoder.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-bad-libs/html/gst-plugins-bad-libs-GstBaseVideoEncoder.html

Buffering playback in GStreamer and clutter-gst174

ClutterGstPlayer7 uses the playbin28 GStreamer element for multimedia con-175

tent playback, which uses queue29 element to provide the necessary buffering176

for both live and on demand content. For the Apertis release (12Q4) new API177

was added to clutter-gst to make it more easier for applications to correctly178

control this buffer. Work is currently in progress to upstream these changes.179

Progressive buffering based on expected bandwidth180

Depending on the locality it might be desirable to not only buffer based on181

the currently available bandwidth, but also on the expected bandwidth. For182

example the navigation system may be aware of a tunnel coming up, where no183

or only very limited bandwidth is available.184

Due to the way buffering works in Gstreamer the final control for when playback185

starts rests with the application, normally an application uses the estimates for186

remaining download time provided by gstreamer (which is based on the current187

download speed). In the case where the application has the ability to make a188

more educated estimate by using location/navigation information, it can safely189

ignore Gstreamers estimate and purely base playback start on its own estimate.190

Distributed playback191

As the basis for the distributed playback proof of concept solution Collabora192

suggest the usage of the Aurena10 client/daemon infrastructure. Aurena is a193

small daemon which announces itself on the network using avahi. This daemon194

provides the media and control information over http and also provide provides195

a Gstreamer based network clock for to use for clients to synchronize against.196

Aurena will be integrated in the Apertis distribution an example clutter-gst197

client will be provided.198

As Aurena is an active project and further work on this topic is scheduled for the199

Q2 of 2014, more details will be provided on the current state and functionality200

available in Aurena closer to that time.201

Camera and Video display on boot202

In order to keep the implementation both low in complexity and flexible a pure203

user-space solution is recommended, that is to say no kernel modification or204

bootloader modification are done to enable this functionality.205

7http://developer.gnome.org/clutter-gst/stable/ClutterGstPlayer.html
8http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-base-plugins/

html/gst-plugins-base-plugins-playbin2.html
9http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-plugins/html/

gstreamer-plugins-queue2.html
10https://github.com/thaytan/aurena

7

http://developer.gnome.org/clutter-gst/stable/ClutterGstPlayer.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-base-plugins/html/gst-plugins-base-plugins-playbin2.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-plugins/html/gstreamer-plugins-queue2.html
https://github.com/thaytan/aurena
http://developer.gnome.org/clutter-gst/stable/ClutterGstPlayer.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-base-plugins/html/gst-plugins-base-plugins-playbin2.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-base-plugins/html/gst-plugins-base-plugins-playbin2.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-plugins/html/gstreamer-plugins-queue2.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-plugins/html/gstreamer-plugins-queue2.html
https://github.com/thaytan/aurena

The advantage of such a solution is that a lot of common userspace function-206

ality can be re-used by the implemention. The main disavantage is that this207

functionality will only be available when userspace is started.208

To provide a general feeling for the timings involved when running an unopti-209

mized darjeeling image (130312) on the I.MX6 Sabrelite board the boot break-210

down is as follows (Note that darjeeling isn’t optimized for startup time) :211

• 0.00s: Power plugged in212

• 0.26s: u-boot started213

• 1.23s: Kernel starting214

• 4.12s: LVDS screen turns on215

• 4.59s: Initramfs/mini userspace starting216

• ~6.00s: Normal userspace starting.217

The u-boot boot delay was disable for this test, no other changes218

Even though these number should be improved by the boot optimisation work219

(planned for Q2, 2013), the same order of magnitude will most likely remain for220

the SabreLite hardware booting from MMC.221

As a basis building block for providing this functionality Plymouth11 will be222

used. Plymouth is the de-factor application used for showing graphical boot223

animations while the system is booting, being using by Fedora, Ubuntu and224

many others. On most systems Plymouth takes advantage of the modesetting225

DRM drivers, with fallbacks to using the old-style dumb framebuffer or even a226

pure text mode.227

Plymouth has a extensive pluggable theming system. New themes can228

be written either in C or using a simple scripting language. A good229

overview/introduction of the plymouth specific theme scripting can be found230

in a series of blog posts by Charley Brey12.231

Plymouth has the ability to use themes which consists of a series of full-screen232

images or in principle even a video file, however most boot animations are kept233

relatively simple and are rendered on the fly using plymouths built-in image234

manipulation support. The reason for this is simply an efficiency trade-of, while235

on-the-fly rendering adds some cpu load for simpler animations that cpu load will236

be still lower then loading every frame from an image file or rendering a video.237

Furthermore this approach reduces the size and number of assets which have to238

be loaded from storage. As such, to minimize the impact on boot performance239

the use simple themes which are rendered on the fly is recommended over the240

use of full-screen images or videos.241

11http://www.freedesktop.org/wiki/Software/Plymouth
12http://brej.org/blog/?cat

8

http://www.freedesktop.org/wiki/Software/Plymouth
http://brej.org/blog/?cat
http://www.freedesktop.org/wiki/Software/Plymouth
http://brej.org/blog/?cat

To add support for the “camera on boot” functionality plymouth will be ex-242

tended such that it can be requested to switch to a live-feed of the (rear-view)243

camera during boot-up. To be able to support a wide range of cameras (e.g.244

both directly attached cameras and e.g. ip cameras) the use of Gstreamer is245

recommended for this functionality. However to ensure boot speed isn’t neg-246

atively impacted Gstreamer can’t be used from the initramfs as this would247

significantly increase its size and thus slowing down the boot. An alternative to248

using Gstreamer would be to implement dedicated, hardware/camera specific249

plugins which are small enough to be included in the initramfs.250

During Q2 of 2013 work will be done to optimise the boot time of Apertis. At251

which point it will become more clear what the real impact of delaying camera-252

on-boot until the start of full userspace is.253

Camera widget and clutter-gst254

To provide the camera widget functionality a new actor was developed for255

clutter-gst. As any other clutter actor, the ClutterGstCameraActor can be em-256

bedded in any clutter application and supports all requirements either through257

the usage of provided convenience APIs or using GStreamer APIs directly. Im-258

age processing is achieved with the usage of pluggable GStreamer elements.259

Transcoding260

GStreamer already supports transcoding13 of various different media formats261

through the usage of custom pipelines specific to each input/output format.262

In order to simplify the transcoding process and avoid having to deal with several263

different pipelines for each supported media format, Collabora proposes adding264

a new transcodebin GStreamer element which would take care of handling the265

whole process automatically. This new element would provide a stand-alone266

everything-in-one abstraction for transcoding much similar to what the play-267

bin2 element does for playback. Applications could then take advantage of this268

element to easily implement transcoding support with minimal effort.269

DVD playback270

Fluendo DVD Player14 is a certified, commercial software designed to reproduce271

DVDs on Linux/Unix and Windows platforms allowing legal DVD playback on272

Linux using GStreamer. It supports a wide range of features including, but not273

limited to, full DVD playback support, DVD menu and subtitles support.274

Other open-source solutions are available, but none of them meets the legal275

requirements and for that Collabora proposes the usage of Fluendo DVD Player276

and to provide the integration of it on the platform.277

13http://gentrans.sourceforge.net/docs/head/manual/html/howto.html#sect-introduction
14http://www.fluendo.com/shop/product/fluendo-dvd-player/

9

http://gentrans.sourceforge.net/docs/head/manual/html/howto.html#sect-introduction
http://www.fluendo.com/shop/product/fluendo-dvd-player/
http://gentrans.sourceforge.net/docs/head/manual/html/howto.html#sect-introduction
http://www.fluendo.com/shop/product/fluendo-dvd-player/

Traffic control278

Traffic control and shaping comes in two forms, the control of packets being279

received by the system (ingress) and the control of packets being sent out by the280

system (egress). Shaping outgoing traffic is reasonably straight-forward, as the281

system is in direct control of the traffic sent out through its interfaces. Shaping282

incoming traffic is however much harder as the decision on which packets to283

sent over the medium is controlled by the sending side and can’t be directly284

controlled by the system itself.285

However for systems like Apertis control over incoming traffic is far more im-286

portant then controlling outgoing traffic. A good example use-case is ensuring287

glitch-free playback of a media stream (e.g. internet radio). In such a case,288

essentially, a minimal amount of incoming bandwidth needs to be reserved for289

the media stream.290

For shaping (or rather influencing or policing) incoming traffic, the only practi-291

cal approach is to put a fake bottleneck in place on the local system and rely on292

TCP congestion control to adjust its rate to match the intended rate as enforced293

by this bottleneck. With such a system it’s possible to, for example, implement294

a policy where traffic that is not important for the current media stream (back-295

ground traffic) can be limited, leaving the remaining available bandwidth for296

the more critical streams .297

However, to complicate matters further, in mobile systems like Apertis which298

are connected wirelessly to the internet and have a tendency to move around299

it’s not possible to know the total amount of available bandwidth at any specific300

time as it’s constantly changing. Which means, a simple strategy of capping301

background traffic at a static limit simply can’t work.302

To cope with the dynamic nature a traffic control daemon will be implemented303

which can dynamically update the kernel configuration to match the current304

needs of the various applications and adapt to the current network conditions.305

Furthermore to address the issues mentioned above, the implementation will306

use the following strategy:307

• Split the traffic streams into critical traffic and background traffic. Police308

the incoming traffic by limiting the bandwidth available to background309

traffic with the goal of leaving enough bandwidth available for critical310

streams.311

• Instead of having static configuration, let applications (e.g. a media312

player) indicate when the current traffic rate is too low for their purposes.313

This both means the daemon doesn’t have to actively measure the traffic314

rate and allows it cope with streams that don’t have a constant bitrate315

more naturally.316

• Allow applications to indicate which stream is critical instead to properly317

support applications using the network for different types of functionality318

10

(e.g. a webbrowser). This rules out the usage of cgroups which only allows319

for per-process level granularity.320

Communication between the traffic control daemon and the applications will be321

done via D-Bus. The D-Bus interface will allow applications to register critical322

streams by passing the standard 5-tuple (source ip and port, destination ip323

and port and protocol) which uniquely identify a stream and indicate when a324

particular stream bandwidth is too low.325

To allow the daemon to effectively control the incoming traffic, a so-called In-326

termediate Functional Block device is used to provide a virtual network device327

to provide an artificial bottleneck. This is done by transparently redirecting the328

incoming traffic from the physical network device through the virtual network329

device and shape the traffic as it leaves the virtual device again. The reason for330

the traffic redirection is to allow the usage of the kernels egress traffic control to331

effectively be used on incoming traffic. The results in the example setup shown332

below (with eth0 being a physical interface and ifb0 the accompanying virtual333

interface).334

335

To demonstrate the functionality as describe above a simple demonstration me-336

dia application using Gstreamer will be written that communicates with the337

Traffic control daemon in the manner described. Furthermore some a testcase338

will be provided to emulate changing network conditions.339

11

	Requirements
	Hardware-accelerated media rendering
	Multimedia Framework
	Progressive download and buffered playback
	Distributed playback support
	Camera display on boot
	Video playback on boot
	Camera widget
	Transcoding
	DVD playback
	Traffic control

	Solutions
	Multimedia Framework
	Hardware-accelerated Media Rendering
	Buffering playback in GStreamer and clutter-gst
	Distributed playback
	Camera and Video display on boot
	Camera widget and clutter-gst
	Transcoding
	DVD playback
	Traffic control

