
Multiuser

Contents1

Terminology and concepts . 22

“user” vs. “uid” . 23

Trusted components . 34

System services . 35

User services . 36

Multi-seat (logind seats) . 47

Fast user switching . 48

Requirements . 49

Distinguishing between privacy levels in user-specific data 610

Authentication . 611

General use-cases . 712

Existing multi-user models . 913

Switchable profiles without privacy 914

Typical desktop multi-user . 1015

Android 4.2+ . 1216

Multi-user support in the Tizen 3 automotive platform 1317

Approach . 1418

The principle of least-astonishment 1519

Levels of protection between users 1520

User accounts: representing users within the system 1621

Creating and managing user accounts 1822

Graphical user interface and input 2023

Switching between users . 2324

Preserving “core” functionality across user-switching 2425

Returning to previous state . 2626

Application ownership and installation 2727

Summary of recommendations . 2728

This document describes how multiple users are expected to use the Apertis29

system, and works mostly as a guide and recommendations to help designing30

the system. It is intended to act as an “umbrella” document covering the multi-31

user topic in general, and will be supplemented by more concrete documents32

describing particular use-cases and recommendations for how those use-cases33

can be addressed.34

At the time of writing, there is one such document, “Multiuser Design: Trans-35

actional Switching”. Please see the current design documents1.36

The driving force behind having a multi-user system is to allow customization37

of the system. A car may have multiple drivers and passengers who would38

be frustrated by customizations done by each other to the system’s look and39

feel and even to data such as playlists. Having multiple users allows each to40

customize their own interface.41

1https://jwd.pages.apertis.org/apertis-website/concepts/

2

https://jwd.pages.apertis.org/apertis-website/concepts/
https://jwd.pages.apertis.org/apertis-website/concepts/

Depending on OEM and consumer requirements, multi-user systems can poten-42

tially also provide personal files and online accounts for each user.43

Terminology and concepts44

“user” vs. “uid”45

In a Unix system, users are typically identified by a numeric user ID, often46

abbreviated “uid”. A uid can represent a person, a system facility, multiple47

people, or even an application (as in Android).48

Because these do not correspond 1:1 in some designs, it is important to be clear49

which one is under discussion. In this document, the jargon term uid or user50

ID is used to refer to a Unix user identifier, while user or person is used to refer51

to a human using the system.52

User account refers to any abstract representation of the user within the system.53

This is most commonly a uid, matching the original Unix design. However,54

systems can exist with multiple uids per user account, such as Android, in55

which each (user account, app) pair has a uid. Conversely, systems can exist56

with multiple user accounts sharing a uid, such as SteamOS (in which one uid57

runs the Steam Big Picture UI, and users log in to it with separate Steam58

accounts).59

The canonical form of a Unix uid is numeric, but for ease of reference, a short60

lower-case textual username may be used to refer to a uid. For example, it is61

common to talk about system users named “root” and “backup”, but the real62

identities of these users within the system are the corresponding numeric uids63

0 and 34; the usernames are merely for convenience and mnemonic value.64

Trusted components65

A trusted component is a component that is technically able to violate the66

security model (i.e. it is relied on to enforce a privilege boundary), such that67

errors or malicious actions in that component could undermine the security68

model. The trusted computing base is the set of trusted components. This is69

independent of its quality of implementation – it is a property of whether the70

component is relied on in practice, and not a property of whether the component71

is trustworthy, i.e. safe to rely on. For a system to be secure, it is necessary72

that all of its trusted components must be trustworthy.73

One subtlety of Apertis’ app-centric design is that there is a trust boundary74

between applications even within the context of one user. As a result, a multi-75

user design has two main layers in its security model: system-level security that76

protects users from each other, and user-level security that protects a user’s77

apps from each other. Where we need to distinguish between those layers, we78

will refer to the TCB for security between users or the TCB for security between79

apps respectively.80

3

System services81

A system service is a service that, conceptually, runs on behalf of the whole82

computer or car, without a division between users. In designs where each user83

has a distinct uid, system services run under a system uid, either root (the most84

privileged uid) or a special unprivileged uid per service or group of services;85

they do not run with the uid of any particular user.86

This term does not necessarily imply anything about whether the service is87

considered to be “part of the operating system”, or whether it is part of a pre-88

installed or user-installable application bundle as discussed in the Applications89

Design document. However, because system services can accept requests from90

multiple users, any system service that will handle users’ private data must be91

trusted to impose a privilege boundary.92

Examples of system services commonly present in Linux systems include Conn-93

Man, NetworkManager, BlueZ, udisks and the D-Bus system bus.94

User services95

A user service is a service that runs on behalf of a particular user. In designs96

where each user has a distinct uid, each user’s user services typically run under97

that same uid; in designs like SteamOS where all users share a single generic98

uid representing “all users”, user services would typically share that same uid.99

Examples of user services commonly present in Linux systems include dconf,100

gvfs, Tracker, Tumbler and the D-Bus session bus.101

Identifying a process as a user service is independent of whether it is treated102

as part of the Apertis platform and independent of any particular application103

(such as the user services mentioned above), or treated as part of an application104

bundle (“agents” associated with apps).105

Multi-seat (logind seats)106

In the context of a multi-user system, a seat is a collection of display and input107

devices, optionally linked to other devices such as a USB socket or optical drive,108

intended to be used by one user at a time. Typical PCs only offer one seat, but a109

second graphics adapter, often connected via USB, can be used to add additional110

seats (a multi-seat system).111

This jargon term is commonly used in Linux system services such as systemd-112

logind, the older ConsoleKit, and GDM. In the context of a car, it should be113

noted that it does not necessarily correspond precisely to the car’s seats: for114

instance, in the common layout that places a single “head unit” touchscreen115

between the driver and front passenger, that touchscreen and any USB sockets116

adjacent to it would be treated as a single seat. If, for example, additional117

touchscreens were added behind the front seats for use by rear passengers, that118

would be a multi-seat system with 3 seats (front, rear left, rear right).119

4

Apertis uses systemd-logind as a core system service, so where disambiguation120

is needed, we will refer to this as a logind seat.121

Fast user switching122

Many operating systems have the concept of fast user switching, which is de-123

scribed in “Fast user switching”: switching user without logging out. Following124

common usage, this document reserves the term “fast user switching” to refer125

to that particular multi-user model, even if some other model might be equally126

fast or faster in practice.127

Requirements128

Apertis is currently designed as a single-user system. There is one GUI session129

with full access to all preferences, apps and data, and a set of apps and user130

services with varying levels of sandboxing and privilege separation from each131

other within that session, running on top of system services whose privileges132

vary. The high-level requirement for this document is that this should be ex-133

panded to support multiple GUI users, each with their own private data and134

user services, running on top of similar system services.135

This section contains a list of general requirements applicable to many multi-136

user systems.137

• Multiple users should be able to use the system. Depending on the specific138

set of requirements, this could involve concurrent use, or one user at a time.139

• When the user logs in to a newly started system, they should find the same140

applications they had left open last time they shut down the system, and141

in the same state. See Returning to previous state for discussion of this142

topic.143

• Some data is private to each user. Depending on the specific set of re-144

quirements, this could include:145

– Settings146

– Address book147

– Browser history148

– Application icons149

– Arrangement of icons in the app launcher150

– Account data for web services151

– Playlists152

• Some data is shared between users. Depending on the specific set of153

requirements, this could include:154

5

– Applications (from the store)155

– Media library (music, videos)156

• Depending on the specific set of requirements, switching users at runtime157

could be supported. Where it exists, this shall be performed with a smooth158

transition, with no visual flickering. User switching should not take more159

than 5 seconds. See Switching between users for discussion of this topic.160

• A subset of features are considered to be core functionality, and must161

not be disturbed by switching between users: they must remain available162

before, during and after any transition between users. The set of core163

functionality could vary by device; in this document we mainly use music164

playing and navigation as examples of this category. See Preserving “core”165

functionality across user-switching for further discussion of this topic.166

• The subset of features that are not disturbed while switching between167

users must not be limited to functionality that is considered to be “part of168

the operating system”. For example, it should be possible to place a user-169

installable player for a third-party music streaming service such as Spotify170

or last.fm in this category. Again, see Preserving “core” functionality171

across user-switching.172

• Depending on the specific set of requirements, peripheral hardware devices173

such as USB storage devices and paired Bluetooth devices could either174

be shared across the entire system, or specific to a user. If they are175

shared, then they must be accessible to all users, with all users able to176

unmount/eject them.177

• The authentication and user-switching user interface should not distract178

the driver more than is necessary; for instance, they should not ask security179

or authentication questions unless a decision is strictly required.180

• The user privileges of the system should be visually obvious: if users have181

selected different personalizations such as colour schemes or themes, then182

the display should use a particular user’s theme whenever it is acting on183

behalf of that user, and at no other time. This limits the risk that users184

will encounter undesired privacy consequences resulting from misunder-185

standing the system’s privacy model.186

Distinguishing between privacy levels in user-specific data187

There are several possible categories of user-specific data.188

Some user-specific data is private. For instance this might include email, brows-189

ing history, social media feeds. (Alice should not be able to read Bob’s email,190

history, social media feeds and so on unless Bob has allowed it.) Meanwhile,191

some user-specific data is sensitive because it allows acting on someone else’s192

behalf. (If Alice is logged-in to Amazon, Bob should not be able to buy things193

6

using her account.) Private and sensitive data are interchangeable from a sys-194

tems perspective: they must be accessible by that user, and only by that user.195

However, some data is only user-specific for convenience or organization; it isn’t196

important whether other users are able to read it, as long as it doesn’t make197

their own actions less convenient.198

For instance, the set of apps that are visible in menus might be one example of199

user-specific data that does not necessarily need to be treated as private. If Alice200

has installed apps for social media networks that Bob doesn’t use, they shouldn’t201

appear in Bob’s menus — but if Bob specifically looks for them, perhaps in an202

Android-Settings-like “storage usage” view, it might be considered acceptable203

that he can see what Alice installed.204

Another possibility for sharing data is that playlists within a shared media205

library could appear as an unobtrusive “Bob’s playlists” folder in other users’206

menus, if desired.207

As discussed in Levels of protection between users, the level of privacy and208

integrity protection between users can vary according to OEM and consumer209

requirements; this could influence how user-specific data is categorized.210

Authentication211

We assume that the HMI provides a way for users to identify and authenticate212

themselves to a trusted HMI component, for instance by:213

• presence of a unique physical key214

• presence of a personal item such as a phone with Near-Field Communica-215

tion support216

• a password or lock-screen gesture217

• face or fingerprint recognition218

• simply selecting a user from a menu (choice of user, but no meaningful219

authentication, similar to one of the cases described in Switchable profiles220

without privacy)221

The exact authentication mechanism depends on manufacturer and user require-222

ments, and is outside the scope of this document: this document only assumes223

that an identification/authentication mechanism exists as part of the operating224

system, and does not rely on specific properties of that mechanism.225

General use-cases226

While this document does not go into the specifics of more elaborate use-cases,227

there are a few simpler use-cases which should be considered by any concrete228

multi-user design within the framework established by this document. In some229

7

cases these use-cases could be considered and rejected, if a particular design’s230

requirements put them out of scope.231

First use232

Alice uses the car for the first time. The system recognises that she has not233

used it previously and so there is no saved state.234

a. First use: The system starts in some default state, for instance at a main235

menu or with a default application such as a media player running.236

Individual use: preferences and state restored237

Alice and Bob share a car, and have separate keys. Alice has configured the238

display for a red UI theme; she uses the car on Monday, listens to a podcast while239

she drives, and has the email app open in the background. Bob has configured240

the UI for a blue theme. He uses the car on Tuesday, and reads the BBC News241

website in the browser app while stopped at motorway services.242

a. Last-used mode: The next time Alice starts the car and authenticates243

as herself (see Authentication), the podcast and email apps should resume in244

the same state they were in when she shut the system down on Monday, and245

the HMI configuration should reflect her preferences (the red theme should be246

used, etc.). Similarly, the next time Bob authenticates as himself, the BBC247

News website should be displayed in the browser app as it was when he shut248

the system down on Tuesday, and the blue theme should be used.249

b. Privacy between non-concurrent users: If the system is configured250

to provide protection between users, then Alice’s private data should not be251

available to Bob and vice versa. For instance, Bob’s web browsing history and252

social media accounts should not be available when Alice starts the web browser,253

even if Alice deliberately looks for them.254

User switching255

a. User switching: Bob is currently using the HMI to read Twitter, and Alice256

wants to check her email. Neither is currently driving. Alice should be able257

to authenticate in some way (see Authentication), switching the HMI to have258

Alice as its current user. When she has finished, Bob should be able to switch259

the HMI back so he is the current user again, and continue to read Twitter.260

b. Privacy during user switching: after switching from Bob’s user account261

to Alice’s, Bob should be able to go away, knowing that Alice cannot access262

his Twitter feed. When Alice has finished and hands back control to Bob, she263

should be able to know that Bob cannot access her email.264

In existing multi-user systems like those described in section 4, this265

is typically implemented by leaving Bob’s user account in a “locked”266

8

state after he transfers control to Alice, and vice versa, requiring267

re-authentication before resuming use.268

Guest mode269

Greg, a guest, is in Diana’s car.270

a. Unauthenticated guest session: If Diana has enabled it (or if it is enabled271

by default and Diana has not disabled it), Greg should be able to start a guest272

session that can access public information and the Web, play music from the273

car’s music library, etc. without authentication.274

b. Owner’s privacy: Greg should not be able to access Diana’s private data275

(or the private data of any other user of the system).276

c. Guest’s privacy: Greg’s browser history, Facebook authentication token,277

etc. should not be available to subsequent guests. For instance, the system278

could temporarily allocate space for Greg’s user-specific data, then discard it279

and terminate all guest processes as soon as Greg logs out, returning to default280

settings for the next guest.281

d. Guest is restricted: Greg should not be able to add or delete music, install282

or remove apps, or similar actions.283

Borrowing the car284

Diana lends her car to David, giving him her key.285

If the system is configured to consider a key as sufficient authentication for a286

user, then it cannot be expected to protect Diana from malicious action by287

David. However, if the system is configured to require secondary authentication288

such as a password, PIN or lock-screen swipe pattern, then David will not be289

able to use Diana’s account.290

a. Can create a new account: Even though David and Diana are using291

the same key, David should be able to create a new account that saves his292

preferences, and switch to it.293

Existing multi-user models294

This chapter describes the conceptual model, user experience and design ele-295

ments used in various non-Apertis operating systems’ support for multiple users,296

because it might be useful input for decision-making. Where available, it also297

provides some details of the implementations of features that seem particularly298

interesting or relevant.299

Switchable profiles without privacy300

The simplest multi-user model can be found in platforms such as Windows 95301

and the Sony PlayStation 3. In these systems, certain settings and other pieces302

9

of application data (such as documents and saved games) are stored separately303

for each user, but there is no privacy or protection between users: each user can304

easily access other users’ accounts.305

One variant of this is where no authentication is required to access a different306

account, as on the PlayStation 3: a user selects their name from a list, and307

there is nothing preventing them from selecting a different user’s name instead.308

Similarly, an unauthorized user can identify themselves as any authorized user309

and gain access.310

Another variant of this is where there is meaningful authentication (e.g. a login311

step with a password), but authenticating as any user is sufficient to access all312

users’ private files. For instance, Windows 95 offered login authentication, but313

did not support filesystems with user-level permissions. As a result, unautho-314

rized users were prevented in principle (in practice, the login step was easily315

circumvented), but each authorized user had the technical capability to read316

and write any other user’s files by navigating to the appropriate directory.317

Both variants of this model are simple to implement, and provides straightfor-318

ward semantics. Their disadvantage is that they do not meet typical privacy319

expectations for a modern operating system: users can impersonate one another,320

read each other’s private files, and even alter each other’s private files. As such,321

it is only suitable for an environment in which every user of the system fully322

trusts every other user of the system (and, for the first variant, everyone with323

physical access to the system).324

We anticipate that these simple use-cases will be appropriate for some, but not325

all, Apertis systems: for example, they might be appropriate for a family car326

where the installed apps do not handle particularly sensitive information. In327

other Apertis systems, stronger privacy/protection between users is likely to be328

required.329

Typical desktop multi-user330

Many modern desktop/laptop operating systems (such as the Windows NT331

series, Mac OS X, and various open source desktop environments on Linux and332

BSD platforms) have a similar model for how multiple users are handled. Apertis333

shares many software components with the GNOME 3 desktop environment (as334

used in, for instance, Debian GNU/Linux and Fedora Linux), so we will use335

GNOME on Linux as our primary example of this type of environment.336

On Unix-derived systems such as Linux and Mac OS X, each user account is337

typically represented by one Unix uid, corresponding to their intended use in338

all Unix systems.339

Basic multi-user: log out, log in as another user340

The most basic form of multi-user support is considerably older than graphical341

user interfaces, and is implemented in most current desktop/laptop operating342

10

systems. The system boots to a login prompt at which the user can choose their343

user account (for instance by choosing from a list or by typing its name), and344

authenticate in some way (typically with a password, but many authentication345

mechanisms are possible).346

Each user has their own set of data files and configuration. To provide privacy347

between user accounts, the system tracks the ownership of user files, and either348

denies access to other users’ files by default, or can be configured to do so.349

To switch between users, the first user must log out, ending their session; this350

typically also terminates most or all of their user services. Ending their session351

presents another login prompt, at which the second user can log in.352

In a typical implementation on Linux systems with the X11 windowing system,353

a system service (a “display manager”, such as GNOME’s GDM) starts an X354

display and uses it to show the graphical login prompt. When the first user355

logs in, their uid is granted access to the X display, which is taken over by356

their session. At the end of their session, the display manager terminates the X357

server, and starts a new X server for the next login prompt.358

Systems which offer this model can easily support the simpler models from359

Switchable profiles without privacy as trivial cases of this model: they can360

implement the PlayStation 3-like model by omitting the authentication step361

after choosing a user, or the Windows 95-like model by giving each authorized362

user access permissions for other users’ files.363

“Fast user switching”: switching user without logging out364

A refinement of the above model for systems with enough memory is to offer365

more than one parallel login session, with one active login session and any366

number of inactive sessions. This is commonly referred to as fast user switching.367

Again, most current desktop/laptop operating systems offer this in some form.368

The first user chooses a “Switch User…” option from a menu; this optionally369

locks the first user’s session (for instance by locking their screensaver), and370

switches to a login prompt at which the second user can log in. To switch back,371

the second user uses “Switch User…” to access another login prompt, at which372

a third user can log in, and so on. Several users can share the system, with373

up to one active session and any number of inactive sessions (limited by system374

RAM, and optionally an arbitrary limit on the number of users).375

If the user logging in at the login prompt already has a login session, then the376

system detects that, and instead of starting a new session, it switches back to377

the existing session, automatically unlocking the screensaver if required. When378

a user logs out, their session is replaced by a login prompt at which any user379

can log in.380

Designers typically treat this model as a superset of the simpler model in Basic381

multi-user: log out, log in as another user: in practice, implementations of “fast382

11

user switching” also offer the non-concurrent log-out/log-in arrangement as a383

trivial case. Similarly, as in Basic multi-user: log out, log in as another user,384

implementations of this model can easily support the models from Switchable385

profiles without privacy as trivial cases.386

In GNOME’s GDM display manager, the first session takes over the X server387

originally used for the login prompt, the same as in Basic multi-user: log out,388

log in as another user:; this runs on a Linux virtual console, traditionally tty7.389

The “Switch User…” option causes the display manager to run a new X server390

on a different virtual console, typically tty8, and switch to it; the second user’s391

session takes over that X server, and so on, allocating a new virtual console392

and running a new X server each time. If a user logs out, the display manager393

remains on the same virtual console, but runs a new X server for the login394

prompt. If the user logging in at the login prompt already has a login session,395

instead of taking over that X server for a new session, the display manager396

switches to the appropriate virtual console for the existing session. The X397

server with the login prompt remains in the background, and is re-used the398

next time a login prompt is required, instead of starting a new X server: for399

example, a system where three users Alice, Bob and Chris repeatedly switch400

between their accounts would reach a “steady state” with four X servers on four401

virtual consoles (corresponding to Alice, Bob, Chris, and the login prompt).402

Once two or more users have logged in, this model provides very rapid switching403

between them: none of their applications or user services need to be terminated404

or restarted. It also eliminates any loss of transient “context” such as notifica-405

tions or window positions, without needing to implement state-saving. However,406

it uses a significant amount of memory: because inactive users’ applications are407

not terminated, two alternating users could need up to twice as much memory408

as a single user. Similarly, because the inactive users’ applications are not ter-409

minated or paused, merely disconnected from input and display devices, they410

can continue to consume other resources, such as CPU time and network band-411

width: a misbehaving application in Alice’s session can cause Bob’s session to412

appear slow.413

Multi-user desktops with multi-seat support414

Some systems, in particular the systemd-logind component used in Apertis, can415

be used to extend the model in Basic multi-user: log out, log in as another416

user by offering several so-called “seats” as defined in Multi-seat logind seats.417

A logind seat is a collection of display and input devices intended to be used by418

a single user, offering the equivalent of section Basic multi-user: log out, log in419

as another user independently on each logind seat. Similarly, a system can offer420

“fast user switching” (“Fast user switching”: switching user without logging421

out) on some or all of the available logind seats.422

GNOME’s GDM display manager switches between virtual consoles on the first423

logind seat, in exactly the same way as section “Fast user switching”: switching424

12

user without logging out. On the second and subsequent logind seats, it behaves425

as described in Basic multi-user: log out, log in as another user, with this logind426

seat’s X server remaining visible regardless of the current virtual console, and427

does not offer “fast user switching”.428

Android 4.2+429

Recent versions of Android have gained multi-user support, initially for tablets430

only, then extended to phones in Android 5.431

When first started, Android 4.22 shows a prompt for setting up the first user432

account. The first user account is special in that it is considered the administra-433

tor for the device, and can thus create, remove and assign permissions to other434

users.435

Android uses separate Unix user account IDs (uids) for separating applications436

from each other, so any communication or sharing between applications was437

already mediated by the Linux kernel and other trusted parts of the Android438

system software. The multi-user design simply allocates a block of uids to each439

user, one uid per (user, application) pair: for example, the first user (user440

number 0) might receive uids u0a123 and u0a45 for two of their apps, and user441

number 1 might receive uids that include u1a67.442

Because applications are already isolated from one another by their differing443

uids, all interaction between apps is mediated by trusted processes, so those444

trusted processes were adapted to take the user into account when deciding445

permissions. Similarly, because apps conventionally use Android-specific APIs446

to access user data, adapting those Android-specific APIs to take the user into447

account is straightforward: an application making an API call that previously448

listed all online service accounts will now only be told about the appropriate449

user’s online service accounts.450

Authentication is through the usual means used by Android: each user gets their451

custom lock screen and, depending on that user’s settings, types in a PIN, a452

password or a pattern connecting dots in a grid for logging in. Icons representing453

all users are shown in the current user’s lock screen, so user switching is a matter454

of locking the screen (which can be done through the ‘quick settings’ menu,455

available in the status bar) and tapping the desired user.456

From a user interface perspective, this resembles “Fast user switching”: switch-457

ing user without logging out on typical desktop operating systems. However, as458

an implementation detail, each user’s apps are terminated when user switching459

occurs, so the actual implementation is closer to the “log out / log back in”460

model (section Basic multi-user: log out, log in as another user).461

Some settings are global to the device, including Wi-Fi networks. All users462

can change these settings, apparently, and those changes will affect every other463

2http://developer.android.com/about/versions/jelly-bean.html#android-42

13

http://developer.android.com/about/versions/jelly-bean.html#android-42
http://developer.android.com/about/versions/jelly-bean.html#android-42

user. User settings and data are kept separate from each other’s. The list of464

applications in the user’s launcher is separate for each user, but application files465

are only downloaded the first time a user asks that application to be installed,466

to save space.467

Because Android provides custom API for everything the application does, the468

storage and reading of data and settings for each user is done automatically by469

their APIs. That means applications did not have to be modified for supporting470

multi-user: the fact that they already use Android APIs to obtain directory471

paths and save files ensures that they are saved to the proper place.472

Multi-user support in the Tizen 3 automotive platform473

The multi-user architecture designed for Tizen 3 in an automotive environment474

was presented3 at FOSDEM 2015.475

At a conceptual level, Tizen applications can either be installed system-wide or476

for a particular user. Guest users can only use system-wide applications; it was477

not clear from the presentation whether only preinstalled applications can be478

system-wide, or whether separate installable applications can also be installed479

system-wide. If installed for a particular user, the application’s files are copied480

into that user’s home directory, contrasting with the centralized app storage481

used “behind the scenes” in this design document and in Android.482

The Tizen model is designed for a “multi-seat” environment as described in483

Multi-user desktops with multi-seat support, where several sets of grouped de-484

vices (a display, its attached touchscreen input device, and perhaps USB sockets485

and/or a headphone jack located near that display) are all attached to the same486

computer as peripherals; this is an attractive model if the system is powerful487

enough to provide acceptable performance on all seats, but comes with higher488

performance requirements than some of the potential classes of requirements489

addressed by this document. In particular, there is a focus on the ability to490

move concurrent applications seamlessly from one screen to another, following491

a user who moves from one seat to another.492

In the Tizen model, all users share a single compositor, which manages all493

seats’ displays and input devices, resulting in the compositor being required to494

act as part of the TCB for security between users (see Trusted components). As495

discussed further in Graphical user interface and input, we do not recommend496

this approach while using X11 for GUI services.497

There is a single privileged user in the Tizen system, and only that user can498

configure certain shared resources such as wireless networking and Bluetooth.499

This seems an unnecessarily limiting model for a car that might be shared500

between two or more primary drivers, for example in a family. It is intended501

that this user will eventually be able to launch applications on seats that are502

currently in use by other users.503

3https://fosdem.org/2015/schedule/event/embedded_multiuser/

14

https://fosdem.org/2015/schedule/event/embedded_multiuser/
https://fosdem.org/2015/schedule/event/embedded_multiuser/

The API model in Tizen appears to involve system services such as the media504

server and thumbnail generation service not only acting on behalf of users to505

fulfill requests, but running as ‘root’ so that the same application can write506

directly into multiple users’ home directories. We recommend avoiding this507

practice: it puts all of those services into the TCB for each layer of the secu-508

rity model (security between users, security between apps and security between509

system services), greatly increasing the amount of security-sensitive code in the510

system and the potential impact of a bug or security flaw.511

The presentation mentioned adding the user ID as an explicit parameter in IPC512

(inter-process communication) calls from applications to system services so that513

the system service will act on behalf of the appropriate user. This could be made514

to work securely by verifying that the actual user ID matches the one in the IPC515

call, but is a potentially dangerous approach: if a naive implementation trusts516

the given parameter and does not verify it, a malicious application could easily517

subvert that implementation. We recommend avoiding “user ID” parameters518

in APIs: if the service can determine the user ID in a secure way, then the519

parameter is unnecessary, and if it cannot, this approach brings the calling520

application into the TCB for security between users (with the practical result521

that all or nearly all applications would end up in the TCB, greatly increasing522

the system’s attack surface).523

Approach524

Because this document does not define precise requirements or use-cases for525

the system, this section outlines multiple possible approaches to several design526

questions. The choice between these approaches must be made based on concrete527

requirements.528

The principle of least-astonishment529

One valuable general design principle is that, when a user carries out an action,530

it should be easy to predict the outcome. In the context of a multi-user system,531

this implies various more concrete principles, such532

• sharing should not occur when a user would not expect it to; this “over-533

sharing” is likely to lead to users distrusting the system and being unwill-534

ing to store private data in it, even if that would be advantageous535

• sharing should occur when a user would expect it to; if it does not, users536

will be inconvenienced by having to copy data manually between different537

contexts538

• performing a similar action in different contexts should have a similar539

result540

15

Levels of protection between users541

There is a spectrum of possible sets of requirements for privacy and integrity542

protection between users: a strongly protected model similar to the one detailed543

in section Typical desktop multi-user, a model with no protection at all as544

described in Switchable profiles without privacy, or anything in between (e.g.545

with protection between users in general, but certain categories of data explicitly546

shared).547

The desired level of protection depends on the user, but we could also decide548

that Apertis will only support a subset of the possible range, and an OEM could549

decide that they will only support a subset of the range allowed by Apertis.550

In use-cases that involve differently-privileged users, the desired level of protec-551

tion might vary between users within a system: for instance, the main users of552

a car might opt for a setup in which switching from one main user to another553

does not require authentication, but switching from a “guest” user to a main554

user does.555

For each set of requirements, we aim to minimize the “friction” in switching556

between users, subject to whatever minimum is imposed by the requirements –557

stronger privacy and integrity protection comes with a higher minimum “fric-558

tion”. For example, if users are to be protected from each other, then switching559

between users must include an authentication step, whereas if there is no ef-560

fective protection (privilege boundary) between users, switching between users561

merely requires choosing the desired user account.562

As a general design principle, design documents for concrete use cases should ad-563

dress the “strongest” supported protection between users, because that imposes564

the most difficult privacy/integrity requirements. Secondarily, they should con-565

sider the “weakest” supported protection between users, because that imposes566

the most general sharing requirements: ideally, this is just a trivial case of the567

high-privacy version, with some of the “pain points” omitted, but it does in-568

troduce new requirements for the ability to pass data between users. All other569

levels of privacy/integrity protection can be represented as somewhere between570

those extremes.571

As a compromise plan if we find situations that cannot be solved in a higher-572

privacy model, it is possible to relax our requirements to declare the highest-573

privacy use cases to be out of scope.574

User accounts: representing users within the system575

There are three possible approaches to representing users in a Linux system.576

Sharing one uid between all users577

In this approach, all user applications and user services run under the same578

uid. The system defines its own proprietary “user account” concept, and all579

16

components that access user-specific data must ensure that they access the580

correct user’s data, disallowing access to other users’ data if appropriate.581

This has the potential to make transitions between users very easy: the “cur-582

rent user” is simply a variable within each application or service. However,583

it places a great deal of trust on each of these components, including every584

third-party (user-installable) application that accesses user-specific data. If the585

system’s security model is that users can be protected from each other, then in586

effect, all of these components are included in the trusted computing base; if587

the requirements do not include protection between users, then distinguishing588

between users is not required for security, but is still required for correctness. In589

practice, we anticipate that not every component would discriminate between590

users correctly.591

This approach also has practical problems for the re-use of existing open source592

components, which assume the traditional use of one uid per user. Having to593

modify all of these components, with a complex change that is unlikely to be ac-594

cepted by their upstream developers, would significantly reduce the competitive595

advantage derived from their use.596

As a result of these disadvantages, we do not recommend this approach for597

Apertis. It would only be viable if all of the following are true:598

• users are not protected from each other, and this will not change in future599

development600

• user-specific data is minimal, only needs to be accessed via Apertis-specific601

APIs, and this will not change in future development602

• it is not considered to be a significant problem if third-party applications603

and services do not consistently distinguish between users, and this will604

not change in future development605

An additional consideration for this approach is that it potentially alters a large606

number of interfaces (such as D-Bus method calls) to have a parameter for the607

user account to be affected. If changing requirements result in switching to608

the “one uid per user” or “many uids per user” models in future, such that the609

correct user account is implicit in the uid, then this vestigial parameter will610

remain in the interface, making the interface more complex than is required.611

If the form of the additional parameter resembles the numeric or string form of612

a uid, then this could even lead to security issues, for instance if a component613

trusts the explicit user-account parameter and ignores the actual uid.614

If this approach is taken, then we recommend reducing the confusion caused615

by naming the additional parameter something more similar to “profile” than616

“user”. If the system is later extended to have one uid per user, rendering the617

parameter vestigial, we recommend giving it a neutral, constant value that does618

not match any user account name, such as “default”.619

17

One uid per user620

The traditional Unix design which motivated the uid concept is that each user621

account is represented by one numeric uid.622

Because each process (i.e. each application or service) starts with a particular623

uid, and processes without administrative privileges cannot change their uid624

while running, this approach requires that user-switching involves starting new625

processes for the new user.626

The major advantage of this approach is that it is how the existing components627

in the system, including the Linux kernel, are designed to operate. In particular,628

the Linux kernel provides privacy and integrity protection between uids.629

We recommend this approach for Apertis.630

Multiple uids per user631

Android uses a design involving multiple uids per user, one per app or set of632

related apps, as described in Android 4.2+. This allows the Linux kernel’s633

privacy and integrity features to be used to protect apps from other apps, even634

within a user session. However, in Apertis, this advantage is redundant, since635

we already use a different kernel feature (AppArmor) to provide privacy and636

integrity protection between apps.637

The major disadvantage of this approach is that it requires every interaction638

between dissimilar apps to be mediated by a system-level component. Within639

the context of Android, this is not a problem, since Android applications and640

services are expected to use Android-specific APIs in any case. However, Apertis641

re-uses existing open source components where appropriate; these components642

would have to be modified to cope with crossing privilege boundaries when they643

communicate with different uids, which, as in the “one shared uid” approach,644

would reduce the value of re-using these components.645

We do not recommend this approach for Apertis.646

Creating and managing user accounts647

Based on the description of desired use case scenarios, Collabora understands648

the main means of identifying and authenticating a user will be through their649

own personal car key. This means a key with an unique ID will have to be issued650

to each user of the car.651

Because most cars require the key to remain inserted while the car is in use, if652

runtime user-switching is required, a secondary form of authentication is likely653

to be required. This could be done via a password (or equivalent, such as a PIN654

or touchscreen swipe pattern), via biometrics such as fingerprint, face or voice655

recognition, or by verifying possession of a near-field communication device such656

as a mobile phone.657

18

As previously noted, depending on manufacturer and consumer requirements,658

there is the possibility of simpler authentication schemes for less privacy-659

conscious users; for instance, a manufacturer or consumer could choose to relax660

the security model to one where a car key is sufficient to authenticate as any661

registered user selected from a menu.662

A registration process will be required, to associate authentication tokens with663

user accounts: one way this could work is detailed in this section.664

Registering the users665

After the car has been bought, the owner is provided with a number of keys,666

one of each is handed to each user. Each user in turn will follow the following667

procedure:668

1. User inserts the key and starts the vehicle669

2. The Apertis system starts up and recognizes that the key is unregistered670

3. A wizard is displayed to register the new user671

4. The user enters whatever information is needed to set up their user ac-672

count, such as their name673

5. The user is given the option of registering a password or other authen-674

tication tokens to be used for keyless authentication (for user switching,675

mainly)676

6. Alternatively the wizard can continue from here on to register email and677

web accounts the user may be interested in678

In case there are more users than keys available, new keys will need to be679

acquired.680

The first user to be registered is special681

It’s important that at least one user be able to perform administrative tasks,682

such as wiping out all of the data, removing users, and so on. One practical683

solution to this is that the first user to be registered is considered special and684

be able to perform these tasks and is also able to give these privileges to other685

users as they see fit, so that more users would be able to perform administrative686

tasks.687

One analogy used in the security literature is that the system “imprints” on688

the first user seen, in the same way that a duckling imprints on its parent. A689

refinement of this model is that deleting all users resets the system to a state690

in which the next user created will be privileged, the so-called “resurrecting691

duckling4” model.692

4https://www.cl.cam.ac.uk/~fms27/duckling/

19

https://www.cl.cam.ac.uk/~fms27/duckling/
https://www.cl.cam.ac.uk/~fms27/duckling/
https://www.cl.cam.ac.uk/~fms27/duckling/
https://www.cl.cam.ac.uk/~fms27/duckling/

Frank Stajano and Ross Anderson. The Resurrecting Duckling: Se-693

curity Issues for Ad-hoc Wireless Networks. In B. Christianson, B.694

Crispo and M. Roe (Eds.). Security Protocols, 7th International695

Workshop Proceedings, Lecture Notes in Computer Science, 1999.696

Premium segment considerations697

Markets which are targeted by Apertis system will be segmented. Upper seg-698

ment cars do not necessarily require the key to be kept in the ignition while the699

car is on. For those kinds of systems, the system could use key proximity as700

authentication factor, so it would allow login for all users whose keys are in the701

car.702

Possible trade-offs and their consequences703

As discussed previously, the authentication system is one of the problematic704

areas that might need trade-offs. The main means of authentication being con-705

sidered at the moment is the car key owned by a user.706

The fact that most cars require the key to remain in the ignition barrel to707

keep the car working makes it impossible for a different user to log in. This708

indicates the need for an alternate authentication method, such as a password,709

which would probably need to be registered with the system when the users first710

register themselves by using the key.711

Should that solution be deemed not good enough, then disallowing user switch-712

ing at runtime will be considered, requiring the car to be turned off and on with713

a different key for logging in with another user.714

Graphical user interface and input715

As of May 2015, the graphics layer of Apertis is based on the Mutter window716

manager/compositor, with an Apertis plugin added to provide the desired UX,717

all running on the X display server. However, the intention is to migrate from718

X to Wayland for display access in the near future. The X Window System was719

designed for the more trusting environment of 1980s academic computing, and720

does not provide an effective security boundary between applications (for exam-721

ple, applications can eavesdrop on other applications’ input events and output722

frames); in the context of a multi-user system which might require differently-723

privileged windows to share a display, this is a compelling reason to prefer724

Wayland.725

This section explores several potential models for managing input and output.726

The basic infrastructure component for Wayland is a compositor, which is re-727

sponsible for mapping application-supplied surfaces (windows) into the visible728

display, routing input events to those surfaces, and applying any visual effect729

with a larger scope than an individual application, such as animated transitions730

between applications.731

20

In the current design proposal for switching single-user Apertis to Wayland, the732

compositor is a Wayland version of Mutter, with a version of the Apertis UX733

plugin that has similarly been adapted for Wayland; this design is analogous to734

GNOME 3’s Shell, which also uses the Mutter libraries for window management735

and compositing under either X or Wayland. One alternative that has been736

considered is to use the Wayland-specific Weston compositor instead of Mutter,737

again with a plugin or extension to provide the desired UX. From the perspective738

of this document, either Mutter or Weston is viable, and neither is preferred739

over the other from a multi-user perspective.740

The Wayland compositor is part of the TCB for security between apps: it is741

responsible for imposing a boundary between the apps that communicate with742

it, and preventing them from carrying out undesired actions such as reading743

each other’s input or taking screenshots of each other’s windows. Depending744

on the design and implementation, it may also need to be part of the TCB for745

security between users.746

Single compositor747

One possible model is to have a single compositor which starts on boot, runs un-748

til shutdown, and is directly responsible for compositing all application surfaces.749

This model would be appropriate if there is only one uid shared by all users as750

described in section Sharing one uid between all users, since in that model there751

is no OS-level isolation between user accounts in any case. It could potentially752

also be used in a design where each user has their own uid, by running the753

compositor with a non-user-specific uid.754

The major disadvantage of this situation is that it places the user-level com-755

positor into a trusted position: it would become part of the trusted computing756

base for separation between users (see Trusted components). Mutter is not typ-757

ically used like this, and has not been designed or audited for this use. Other758

compositors would need to be carefully checked for safety for this use. As a759

general design principle, the less code is in the trusted computing base (for760

any given layer of security), the better; this conflicts with the user-level com-761

positor’s broad role in mediating between apps, including animated transitions,762

copy/paste functionality, on-screen keyboard handling and so on.763

Nested compositors764

Another possible approach is to make use of nested compositors. In this model,765

a system compositor starts on boot, runs until shutdown, and is responsible for766

compositing surfaces provided by system-level components. Instead of surfaces767

supplied by applications, the system compositor would primarily be responsible768

for compositing surfaces supplied by one or more session compositors, and rout-769

ing input events to an appropriate session compositor: in effect, it treats the770

session compositors like ordinary applications.771

The system compositor would run under a system (non-user-specific) uid, while772

21

the session compositors would run under an appropriate uid for their respective773

users.774

We do not recommend this approach. This design was suggested during early775

upstream design work on Wayland, but is now strongly discouraged by Wayland776

developers. One major issue is in dealing with input events. Mediating every777

input event through two layers of compositor would increase latency, limiting778

responsiveness, so it is desirable to grant user sessions direct access to input779

events; but granting direct access to session compositors nested inside a system780

compositor is problematic, and would cause conflicts between the roles of the781

system compositor and the systemd-logind service.782

Another reason to prefer other models is the increased complexity of the system783

as a whole in this model.784

Switching between compositors785

The traditional design for user-switching in X, as described in Basic multi-user:786

log out, log in as another user and “Fast user switching”: switching user without787

logging out, is to start a new X server for each user session and switch between788

them, for instance by using the Linux kernel’s “virtual console” facility, or by789

dynamically attaching/detaching the X servers to the video device. It would be790

possible to do the equivalent in a Wayland environment, by running multiple791

session compositors, switching access to the video output between them, and792

not having a system compositor.793

In this model, the transition between users would involve systemd-logind revok-794

ing the old session compositor’s control over the display (“DRM master” status)795

and over input devices, and giving control to the new session compositor. This796

could be done at any point in the transition: before, after or during an animated797

transition.798

The major disadvantage of this design is that switching between virtual consoles799

is an all-or-nothing operation: the system either displays a frame from one800

compositor or a frame from another, but it cannot combine two (for instance801

by overlaying them, with transparent regions). It is also not instantaneous, and802

would have to be disguised by having a transition where several consecutive803

frames are allowed to be the same.804

For some UX designs, this would not matter. For example, if a designer specifies805

that the first user’s session should “fade out” to a black screen or some sort of806

“please wait…” placeholder, or move off-screen, then the system could switch to807

a matching frame in the new compositor, wait for the switch to occur, and have808

the second user’s session “fade in” or move in from off-screen. Similarly, if the809

UX for user-switching involves a menu from which the new user is chosen, then810

that menu could be used as a fixed point around which to anchor the transition.811

However, if the desired transition has the two users’ sessions overlap – for in-812

stance, a full-screen cross-fade from one to the other, or any animated movement813

22

that has both sessions exist on-screen at the same time – then it would be dif-814

ficult to achieve these effects in this design without essentially copying a static815

screen-capture of one session into the other session. Similarly, if the desired816

transition has smooth movement from beginning to end – for example, smooth817

horizontal scrolling with the conceptual model that the other user’s session is818

“just off-screen” – then the only practical points at which to do the virtual con-819

sole switch would be at the very beginning or at the very end; either way, this820

would likely result in a few frames of non-responsiveness at a time when the821

user might reasonably expect the system to be responsive.822

Copying a screen-capture of one session into the other session is also a potential823

privacy risk, since it results in the screen contents crossing the trust boundary:824

it would be technically possible for the second user’s session to save the captured825

image.826

Switching between compositors with a system compositor827

Because Wayland does not require clearing the framebuffer during switching,828

another possible approach would be to use a system-level compositor without829

nesting, used for transitions, and optionally for startup and shutdown. At any830

given moment, either the system-level compositor or a session compositor would831

be active (have control over input and output), but never both.832

In this model, as in Switching between compositors, the transition between users833

would involve systemd-logind revoking the old session compositor’s control over834

the display (“DRM master” status) and over input devices; however, instead of835

immediately giving control to the other session, instead it would give control to836

a special-purpose system-level compositor which would perform the transition,837

and then in turn hand over to the new session. This system-level compositor838

could capture the current screen contents as a starting point for the animated839

transition, if desired; as in Switching between compositors, the screen contents840

would cross a privilege boundary, but unlike Switching between compositors,841

the other side of the privilege boundary in this design is a trusted process.842

The new session compositor could be started without direct access to the display843

(it would not yet be the “DRM master”), and instructed to draw its initial state844

into a buffer; recent Linux kernel enhancements mean that it could use in-GPU845

processing and memory for this drawing operation, without having control over846

what is displayed. The system-level compositor would use that buffer as the847

endpoint of its animated transition. On completing the transition, it would848

instruct systemd-logind to grant full display and input access to the new session849

compositor.850

As a result of its role in user-switching, the system-level compositor used for851

the transition would potentially be part of the TCB for security between users.852

However, its functionality would be minimal: because it would not be active853

during normal use, only during transitions, it would not necessarily need to854

23

process input at all, and its output handling would be limited to performing the855

animation from the old to the new screen contents.856

Switching between users857

If runtime switching between users is required, there is a spectrum of possible858

approaches.859

At one extreme is the simplest form of the approach described in section 4.2.1,860

where we terminate all of the newly inactive user’s apps and user services (any-861

thing that is user-specific), and only non-user-specific processes (system services)862

continue to run. That has the lowest possible memory and CPU overhead: there863

is going to be a small amount of overhead during the necessary “grace period”864

while we let the inactive user’s apps save their state before killing them, but865

this is minimized.866

At the opposite extreme is the “fast user switching” as described in section 4.2.2,867

in which the inactive user’s entire session, including GUI apps, user services,868

games, and infrastructure components such as the window manager and X server869

(or session compositor) continue to run, with the only difference being that they870

are disconnected from the input and display hardware. That has considerable871

overhead: in the worst case, where we assume that system services are negligible872

when compared with per-user components, switching between two users could873

double the memory and CPU consumption.874

We can choose various points along that spectrum depending on OEM and875

customer requirements. If we can terminate all of the inactive user’s apps and876

the majority of their user services, the result is close to the first extreme –877

for example, this could be based on an “agents continue to run across user-878

switching” flag in the app manifest, perhaps implemented as an Android-style879

“permission”. App-store curators could carry out more thorough validation on880

services that request that flag, to ensure that they will not have an adverse881

performance impact.882

If we can terminate all of their apps but must leave all of their user services883

running, we get closer to the second extreme. The closer we are to the second884

extreme, the higher our hardware requirements for a given performance level885

will be.886

If we terminate at least some of the newly inactive user’s processes, a second887

axis of variation is how much overlap we are prepared to tolerate between the888

sessions: to allow those processes to save their current state, a “grace period”889

will be required between notifying those processes that they must exit, and890

actually terminating them.891

One approach is to disallow overlap entirely, and not start the transition until892

the inactive user’s session has completely ended, with a “please wait…” message893

while their processes shut down. However, this maximizes latency and user-894

visible disruption. To reduce the time required to switch between users, it895

24

might be desirable for these processes to continue to run concurrently for a896

short time, in parallel with starting the newly active user’s session. There is897

a trade-off here: the more CPU time is consumed by the newly inactive user’s898

processes, the less is available to display a smooth animated transition to the899

newly active user and launch their processes. This could be mitigated by de-900

prioritizing the CPU and bandwidth consumption of the inactive user’s apps, at901

the cost of extending the necessary “grace period” for a given amount of state-902

saving activity: for example, if an app’s state-saving procedure would normally903

take 50% of the CPU for 0.1 seconds, throttling that app to 5% of the CPU904

would make its shutdown take 1 second.905

Preserving “core” functionality across user-switching906

If user-switching during use is supported, then certain features of the system907

must continue to work during and after the user switching operation.908

For example, navigation-related notifications (notifying the driver that they909

should turn off their current route soon, that the speed limit will change soon,910

etc.) are time-sensitive, and it would be reasonable to require that these noti-911

fications are not interrupted or delayed, even if user switching takes place just912

before or even during the notification.913

Further examples of background features that might be in the category that914

must not be interrupted include media playback (if the driver is listening to915

music, it would be reasonable to require that playback is not stopped or dis-916

rupted by user switching, although interrupting “now playing…” notifications917

might still be acceptable) and incoming phone or VoIP calls.918

These features cannot be assumed to be a fixed part of the operating system: for919

example, it should be possible to have uninterrupted media playback via a third-920

party audio streaming app, such as one for last.fm or Spotify, or uninterrupted921

VoIP call notifications for a third-party VoIP implementation.922

Conversely, essential operating system features such as preinstalled or non-923

removable apps are not necessarily all in the category of features that must924

continue to work during user-switching: for example, incoming email notifica-925

tions are less time-critical than calls, and it is likely to be acceptable for them926

to be paused during user-switching.927

There are several possible approaches to keeping these features working across928

a user-switch. Depending on the concrete requirements and use cases, we could929

choose one of these approaches for the whole system, or choose some combination930

of them for different apps and services.931

As mentioned briefly above, there is the potential for a subtle distinction be-932

tween components where an interruption to notifications is unacceptable (for933

instance, navigation or incoming calls might be in this category), and compo-934

nents where an interruption to functionality is unacceptable, but an interruption935

to notifications is allowed (or even desirable).936

25

For a possible example of the second category, consider music playback, on a937

system where a visual notification is triggered when the current track changes.938

Suppose we switch the current user from Alice to Bob at 12:00:00, at which time939

track 1 is 2 seconds from ending, and the animated transition takes 4 seconds.940

It seems reasonable to expect that track 1 must continue to play until 12:00:02,941

and it also seems reasonable to expect that track 2 must start at 12:00:02 and942

continue to play smoothly. However, it is not necessarily a requirement that the943

“now playing track 2” notification cannot be delayed until Bob’s session becomes944

fully available at 12:00:04; indeed, this might be considered more desirable than945

having it interrupt the animated transition.946

System services947

System services (as defined by System services) continue to run regardless of948

what is happening in user sessions, so one possible approach is to put “core”949

functionality in system services. These could be anywhere from highly privileged950

to entirely unprivileged; the distinction here is only that they are independent951

of user accounts.952

For example, network management services such as ConnMan are highly-953

privileged system services, whereas the Avahi name-resolution and service954

discovery service is system-wide but unprivileged.955

If this approach is to be used for third-party installable applications, then we956

will need to ensure that third-party application bundles can provide system957

services, in a way that does not allow those third-party application bundles to958

compromise the overall security of the system.959

For components that deal with user-specific data, making the component into960

a system service requires that the component is trusted to provide the correct961

privilege separation: for example, if the component has access to multiple users’962

private data, it should not reveal one user’s private data to another user unless963

the system’s security model allows this to happen.964

As a general design principle to avoid circular dependencies and unnecessarily965

tightly-coupled components, lower layers should not rely on higher layers. Sys-966

tem services are at a low layer in the stack, so they should not initiate commu-967

nication with user services or users’ graphical sessions. One common approach968

to this is to have a component inside each user session whose role is to provide969

the user interface for a “headless” system service, separating backend logic and970

system-level configuration (the system service) from user interface presentation971

and per-user configuration (the user part).972

User services continuing to run973

User services (as defined by User services) are inherently per-user. If the end974

of a user’s login session terminates their GUI applications but leaves some or975

all of their user services running, this could increase system load (as noted976

26

in section Switching between users), but would make user services a suitable977

implementation for features that must run uninterrupted. This could apply978

either in general, or with restrictions (for example, some subset of the inactive979

user’s user-services could continue to run, perhaps according to a “flag” in their980

associated app manifests).981

Distinguishing between the driver and other users982

Because the driver is the primary user of the system, one possible refinement983

of this requirement would be to say that core functionality associated with the984

driver cannot be interrupted, and must retain its ability to display notifications,985

but that switching may interrupt functionality associated with other users. This986

would limit the additional system load from multiple users: the maximum set987

of processes running at a given time would be one non-driver’s full session, plus988

whatever subset of the driver’s processes are considered to be necessary.989

Agents990

The Apertis design has the concept of “agents”, which are lightweight back-991

ground processes running on behalf of a user. Depending on the precise re-992

quirements for agents, they could be implemented as system services, or as user993

services, or divided between those two categories.994

Returning to previous state995

Saving and restoring the state of the session is a hard problem in general. Some996

platforms, such as Android, made it a central piece of their application life cycle997

management and built it right into the application support for the platform. The998

fact that Android and iOS have custom platform layers allows them to make999

this viable.1000

Collabora is not aware of any deployment of OS-level freezing and thawing of1001

processes at the moment, but such a strategy could be investigated in the future1002

for usage in Apertis. For now, having the application itself care about saving1003

and restoring state, even if supported by some high level API, seems to be1004

the more realistic approach. More discussion about this can be found in the1005

Applications design5 document.1006

Application ownership and installation1007

In current app-store platforms such as Apple, Google Play, Steam or PlayStation1008

Store, if you buy an app, it is associated with your personal account (Apple,1009

Google, etc.) and can be downloaded to any device associated with that account,1010

subject to some limits. This is one possible approach to how apps are deployed1011

on Apertis.1012

5https://jwd.pages.apertis.org/apertis-website/concepts/applications/

27

https://jwd.pages.apertis.org/apertis-website/concepts/applications/
https://jwd.pages.apertis.org/apertis-website/concepts/applications/

To avoid wasting space with duplicate application installations, current app-1013

store implementations with multi-user support, such as Android, have chosen1014

to install applications system-wide. If Apertis apps are, conceptually, installed1015

per-user, then we recommend implementing this by keeping a list of apps per1016

user, and merely hiding apps from users who have not “installed” that app. If1017

the user acquires an app that another user has already installed, the system1018

could behave as though it was freshly downloaded, but in fact just stop hiding1019

the system-wide app from the current user: from the user’s perspective, this is1020

indistinguishable from a very fast download and installation.1021

Another potential conceptual model is to treat apps as more like car accessories.1022

You could, for instance, buy a car with metallic paint, or add alloy wheels1023

later; when you sell the car, the feature goes with it. Applying this model to1024

applications, it could be possible to buy a car with the social media app bundle1025

preinstalled, or add the media streaming bundle later, and have the apps go1026

with the car when it is sold. In some respects, this is the more natural model1027

from the implementation point of view: we do not recommend duplicating the1028

app’s executable code and resources, regardless of whether it is conceptually1029

installed per-user.1030

Whichever of these approaches is taken, choosing whether ownership/licensing1031

of the app follows the car or the purchaser is primarily a matter for the app1032

store implementation, not the multi-user design.1033

Summary of recommendations1034

As discussed in User accounts representing users within the system, Collabora1035

recommends representing each user account as a Unix user ID (uid). The first1036

user to be registered in a new system must be able to perform administration1037

tasks such as system updates, application installation, creation of new users1038

and setting up permissions – that is discussed in Creating and managing user1039

accounts.1040

There is a range of possible approaches to switching between users, discussed in1041

section Switching between users. This document does not recommend a particu-1042

lar choice from that range, since it depends on the available hardware resources1043

and the system’s use-cases and requirements. For budget-limited designs with1044

significant hardware limitations, we should consider terminating most user-level1045

processes while switching to reduce concurrency, or if this is not acceptable, opt1046

to leave user-switching unsupported; for premium models with more capable1047

hardware, the more resource-expensive “fast user switching” approach can be1048

considered.1049

In Preserving “core” functionality across user-switching we outline various pos-1050

sible approaches to ensuring that “core functionality” is not interrupted by a1051

user switch. Services that need to stay running after a user switch should have1052

their background functionality split from their UIs; they can either run as a1053

28

different Unix user account ID – a “system service” – or be a specially flagged1054

“user service” that is not terminated with the rest of the session.1055

In Returning to previous state, Collabora recommends that applications should1056

be handling saving and restoring of their state themselves, potentially supported1057

by helper SDK APIs, which means only applications written with Apertis in1058

mind would work. That recommendation comes from the fact that there is no1059

solution that would work for all applications.1060

Ways of having a smooth visual transition when switching users are discussed1061

in section Graphical user interface and input. Collabora recommends revisiting1062

this topic after Apertis’ graphical user interface and input processing has been1063

switched from X to Wayland; our provisional recommendation is to implement1064

a hand-off procedure between compositors running under the appropriate user1065

ID, either with (Switching between compositors with a system compositor or1066

without (section Switching between compositors) an intermediate switch to a1067

system compositor.1068

29

	Terminology and concepts
	``user'' vs. ``uid''
	Trusted components
	System services
	User services
	Multi-seat (logind seats)
	Fast user switching

	Requirements
	Distinguishing between privacy levels in user-specific data
	Authentication
	General use-cases

	Existing multi-user models
	Switchable profiles without privacy
	Typical desktop multi-user
	Android 4.2+
	Multi-user support in the Tizen 3 automotive platform

	Approach
	The principle of least-astonishment
	Levels of protection between users
	User accounts: representing users within the system
	Creating and managing user accounts
	Graphical user interface and input
	Switching between users
	Preserving ``core'' functionality across user-switching
	Returning to previous state
	Application ownership and installation

	Summary of recommendations

