
Preferences and persistence

Contents1

Introduction 22

Terminology and concepts 23

System Settings . 24

User settings . 25

App settings . 26

Preferences . 37

User services . 38

Persistent data . 39

Main storage . 410

GSettings . 411

AppArmor . 412

Requirements 413

Access permissions . 414

Writability . 515

Rollback . 516

System and app bundle upgrades . 517

Factory reset . 618

Abstraction level . 619

Minimising I/O bandwidth . 620

Atomic updates . 621

Transactional updates . 622

Performance tradeoffs . 723

Data size tradeoffs . 724

Concurrency control . 725

Vendor overrides . 726

Vendor lockdown . 727

User interface . 828

Control over user interface . 829

Rearrangeable preferences . 830

Searchable preferences . 831

Storage of user secrets and passwords 832

Preferences hard key . 833

Existing preferences systems 934

GNOME Linux desktop . 935

Preferences . 936

Persistent data . 1037

Secrets and passwords . 1038

Android . 1139

Preferences . 1140

Persistent data . 1141

Secrets and passwords . 1242

2

iOS . 1243

Preferences . 1244

Persistent data . 1345

Secrets and passwords . 1446

GENIVI . 1447

Preferences and persistent data 1448

Secrets and passwords . 1549

Approach 1650

Preferences approach 1751

Overall architecture . 1752

Requirements . 1853

Proxied dconf backend . 1954

Requirements . 2055

Development backend . 2056

Requirements . 2057

Key-file backend . 2158

Requirements . 2259

Security policy . 2260

User interface . 2361

System preferences application 2462

Per-application preferences windows 2463

Generating a preferences window from a GSettings schema file . 2564

Support for custom preferences windows 2665

Searchability of preferences . 2766

Reorganising preferences . 2767

Preferences list widget . 2868

Vendor lockdown . 2869

Discussion of automatically generated versus manually coded70

preferences UIs . 2971

Preferences hard key . 3072

Existing preferences schemas . 3073

Persistent data approach 3174

Overall architecture . 3175

Well-known state directories . 3276

Recommended serialisation APIs . 3277

GKeyFile . 3378

GVDB . 3379

SQLite . 3480

GNOME-DB . 3481

When to save persistent data . 3582

Recently used and favourite items . 3583

Summary of recommendations 3584

3

Introduction85

This documents how system services and apps in Apertis may store preferences86

and persistent data. It considers the security architecture for storage and access87

to these data; separation of schemas, default values and user-provided values;88

and guidelines for how to present preferences in the UI.89

The Applications Design, and Global Search Design documents are relevant90

reading. The Applications Design1 and the Global Search Design2 reference91

the need for storage of persistent data for apps. See Overall architecture for a92

design covering this.93

The Robustness Design3 document gives more detail on the requirements for94

robustness of main storage in the face of power loss.95

The principles described in this document also apply to The next-gen Apertis96

application framework4 for which Apertis will use Flatpak.97

Terminology and concepts98

System Settings99

A system setting is one which does not vary by user, and applies to the entire100

system. For example, networking settings. This document considers system101

settings which must be readable by multiple components — settings which are102

solely for the use of a single system service are out of scope, and may be stored103

in whichever way that service wishes (typically as a configuration file in /etc).104

This is particularly important for sensitive settings, for example the shadow105

user database in /etc/shadow, which must not be readable by anything except106

the system authentication service (PAM).107

User settings108

A user setting is one which does vary by user, but not by app. User settings109

apply to the whole of a user’s session. For example, the language or theme.110

App settings111

An app setting is one which varies by user and also by app. Throughout this112

document, the term ‘app’ is used to mean an app-bundle, including the UI and113

any associated agent programs, analogous to an Android .apk, with a single114

security domain shared between all executables in the bundle. The precise115

1https://jwd.pages.apertis.org/apertis-website/concepts/applications/
2https://jwd.pages.apertis.org/apertis-website/concepts/global-search/
3https://jwd.pages.apertis.org/apertis-website/concepts/robustness/
4https://jwd.pages.apertis.org/apertis-website/concepts/application-framework/

4

https://jwd.pages.apertis.org/apertis-website/concepts/applications/
https://jwd.pages.apertis.org/apertis-website/concepts/global-search/
https://jwd.pages.apertis.org/apertis-website/concepts/robustness/
https://jwd.pages.apertis.org/apertis-website/concepts/application-framework/
https://jwd.pages.apertis.org/apertis-website/concepts/application-framework/
https://jwd.pages.apertis.org/apertis-website/concepts/application-framework/
https://jwd.pages.apertis.org/apertis-website/concepts/applications/
https://jwd.pages.apertis.org/apertis-website/concepts/global-search/
https://jwd.pages.apertis.org/apertis-website/concepts/robustness/
https://jwd.pages.apertis.org/apertis-website/concepts/application-framework/

terminology is currently under discussion, and this document will be updated116

to reflect the result of that.117

App settings apply only to a specific app, and would not make sense outside118

the context of that app. For example, whether to enable shuffling tracks in the119

media player; whether to open hyperlinks in a new tab by default in the web120

browser; or the details for accessing a user’s e-mail account.121

Preferences122

‘Preferences’ is the general term for system, user and app settings. The terms123

‘preference’ and ‘setting’ will be used interchangeably throughout this document.124

User services125

A user service is as defined in the Multiuser Design document — a service126

that runs on behalf of a particular user. Throughout this document, this is127

additionally assumed to mean a platform user service, which is not tied to a128

particular app-bundle. The alternative is an agent user service, which this129

document considers part of an app-bundle, with the same access to settings as130

the app-UI.131

Persistent data132

Persistent data is app state which persists across multiple user sessions. For ex-133

ample, documents which the user has written, or the state of the user’s pending134

downloads.135

One distinguishing factor between preferences and persistent data is that ven-136

dors may override the default values for preferences (see Vendor overrides), but137

not for persistent data. For example, a vendor would not want to override in-138

formation about in-progress downloads; but they might want to override the139

default background image filename for a user.140

The persistent data for an app may be the same as the data it shares between141

user sessions, or may differ. The difference between persistent data and data142

for sharing between apps is discussed in the Multiuser Design document.143

Persistent data is stored on main storage, whereas shared data is expected to144

be passed in memory — so while the sets of data are the same, the mechanisms145

used to handle them are different. Persistent data is always private to an app,146

and cannot be read by another app or user.147

Persistent data might cover all state in an application — such that restoring its148

persistent data when starting the application is sufficient to make it appear as149

if it had been suspended, rather than exited. Or persistent data might cover150

some subset of this. The decision is up to the application authors.151

5

Main storage152

A flash disk, hard disk, or other persistent data storage medium which can be153

used by the system. This term has been chosen rather than the more common154

persistent storage to avoid confusion with persistent data.155

GSettings156

GSettings5 is an interface provided by GLib for accessing settings. As an in-157

terface, it can be backed by different storage backends — the most common is158

dconf, but a key file backend is available for storage in simple key files.159

GSettings uses a concept of ‘schemas’, which define available settings, their data160

types, and their default values. Each setting is strictly typed and must have a161

default value. A schema has an ID, and is ‘instantiated’ at one or more schema162

paths. Typically, a schema will be instantiated at a single path, but may be163

instantiated at multiple paths to support storing the same settings for multiple164

objects. For example, a schema for an e-mail account could require a server165

name, username and protocol, and be instantiated at multiple paths6, one path166

for each configured e-mail account.167

AppArmor168

AppArmor7 is an access control framework used by Apertis to enforce fine-169

grained permissions across the entire system, restricting which files each process170

can open.171

Requirements172

Access permissions173

Access controls must be enforceable on preferences. Read and write permissions174

must be available. It is assumed that if a component has read permission for175

a preference, it may also be notified of any changes to that preference’s value.176

It is assumed that if a component has write permission for a preference, it may177

also reset that preference.178

A suggested security policy for preferences implements a downwards flow for179

reads:180

• Apps may read their own app settings, user settings for the current user,181

and all system settings.182

• User services may read the user’s application settings, user settings for183

the current user, and all system settings.184

5https://developer.gnome.org/gio/stable/GSettings.html#GSettings.description
6https://developer.gnome.org/gio/stable/GSettings.html#gsettings-relocatable
7http://apparmor.net/

6

https://developer.gnome.org/gio/stable/GSettings.html#GSettings.description
https://developer.gnome.org/gio/stable/GSettings.html#gsettings-relocatable
http://apparmor.net/
https://developer.gnome.org/gio/stable/GSettings.html#GSettings.description
https://developer.gnome.org/gio/stable/GSettings.html#gsettings-relocatable
http://apparmor.net/

• System services may read their own app settings, and all system set-185

tings.186

Writes are generally only allowed at the same level:187

• Apps may write their own app settings.188

• User services may write user settings for the current user.189

• System services may write system settings for all users, user settings190

for any user, and app settings for any app for any user.191

Note that apps must not be able to read or write each others’ settings. Similarly192

for user services and system services.193

Persistent data is always private to a (user, app) pair, though it can be accessed194

by user services and system services.195

Writability196

As well as the value of a preference, components must be able to find out whether197

the preference is writable. A preference may be read-only if the component198

doesn’t have write permission for it (Access permissions) or if it is locked down199

by the vendor vendor lockdown).200

This does not apply to persistent data, which is always read–write by the (user,201

app) pair which owns it.202

Rollback203

As per section 4.1.5 of the Applications Design document, and section 6 of204

the System Update and Rollback Design document, applications must support205

rollback to a previously installed version, including restoring the user’s settings206

for that application by reverting the stored preferences to those from the earlier207

version. The storage backends for the preferences and persistence APIs must208

support restoring stored preferences from an earlier version — they should not209

support context-sensitive conversion of newer preferences to older ones.210

Applications do not have to support running with preferences or persistent data211

from a newer version than the application code.212

System and app bundle upgrades213

As per the Applications Design and the System Update and Rollback design,214

applications must also support upgrading preferences and persistent data from215

previous application versions to the current version.216

They do not need to support downgrading preferences or persistent data by217

converting it from a newer version to an older one.218

7

Factory reset219

The system must provide some means for the user to reset the state of all apps220

to a factory default for a particular user, or for all users. This is necessary221

for supporting removing user accounts, refreshing the car for transfer to a new222

owner, or clearing the state of a temporary guest account (see the Multiuser223

Design document). Similarly, it must support clearing the state of a single224

(user, app) pair.225

The factory reset must support resetting preferences, persistent data, or both.226

Abstraction level227

The preferences and persistent data APIs may want to abstract the underlying228

storage backend, for example to support uniform access to preferences stored229

in multiple locations. If so, details of the underlying storage backend must230

not be present in the abstraction (a ‘leaky abstraction’) — for example, SQL231

fragments must not be used in the interface, as they tie the implementation to232

an SQL-based backend and a specific schema.233

Conversely, any more than one layer of abstraction is an unnecessary complica-234

tion.235

Minimising I/O bandwidth236

As with all components which use main storage, the preferences and persistent237

data stores should minimise the I/O load they impose on main storage. This238

is a particular concern at system startup, where typically a lot of data must be239

loaded from main storage, and hence I/O read efficiency is important.240

Atomic updates241

The system must make atomic writes to main storage, so that preferences or242

persistent data are not corrupted or lost if power is lost part-way through saving243

changes.244

An atomic write is one where the stored state is either the old state, or the new245

state, but never an intermediate between the two, and never missing entirely.246

In other words, if power is lost while updating a preference, upon rebooting247

either the old value of the preference must be loadable, or the new value must248

be loadable.249

See the Robustness Design document, §3.1.1 for more details on general robust-250

ness requirements.251

Transactional updates252

The system must allow updates to preferences to be wrapped in transactions,253

such that either all of the preferences within a transaction are updated, or none254

8

of them are. Transactions must be revertable before being applied permanently.255

Performance tradeoffs256

Preferences are typically written infrequently and read frequently; access pat-257

terns for persistent data depend on the app. The implementation should play to258

those access patterns, for example by using locking which favours readers over259

writers.260

Data size tradeoffs261

It is not expected that preference values will be large — a few tens of kilobytes262

at most. Conversely, persistent data may range in size from a few bytes to263

many megabytes. The implementation should use a storage format suitable to264

the expected data size.265

Concurrency control266

As system preferences may affect security policy, reading them should be race267

free, particularly from time-of-check-to-time-of-use8 race conditions. For exam-268

ple, if a preference is changed by process C while process R is reading it, process269

R must either see the new value of the preference, or see the old value of the270

preference and subsequently be notified that it has changed.271

Similarly for persistent data.272

Vendor overrides273

It may be desirable to support vendor overrides, where a vendor shipping Apertis274

can change the default values of the (app, user or system) preferences before275

shipping to the end user. For example, they may change the default background276

image shown to the user.277

If these are supported, resetting a preference to its default value (for example,278

if doing a Factory reset) must restore it to the vendor-supplied default, rather279

than the Apertis default. There is no need to be able to access the Apertis280

default at any time.281

This does not apply to persistent data.282

Vendor lockdown283

It may also be desirable to support vendor lockdowns, where a vendor shipping284

Apertis can lock a preference so that end users or non-privileged applications285

may not change it. For example, they may wish to lock the URI which is checked286

for system updates.287

8http://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

9

http://en.wikipedia.org/wiki/Time_of_check_to_time_of_use
http://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

This does not apply to persistent data.288

User interface289

There must be some user interface (UI) for setting preferences. This may be290

provided by a system preferences application, as a separate window in each291

application, or as individual widgets embedded throughout an application’s in-292

terface; or a combination of these options.293

This does not apply to persistent data.294

Control over user interface295

It must be possible for the vendor to have complete control over the way pref-296

erences are presented if all applications’ preferences are presented in a system297

preferences application.298

This does not apply to persistent data.299

Rearrangeable preferences300

It must be possible for a vendor to rearrange the preferences from applications301

if they are presented in a system preferences application, so that (for example)302

all ‘privacy’ preferences are presented in a page together.303

Searchable preferences304

It must be possible for a system preferences application provided by the vendor305

to allow the user to search all preferences from all applications.306

Storage of user secrets and passwords307

There must be a secure way to store user secrets and passwords, which preserves308

confidentiality of these data. This may be separate from the main preferences309

or persistent data stores.310

Preferences hard key311

There must be support for a preferences hard key (a physical button in the vehi-312

cle) which when pressed causes the currently active application’s settings to be313

displayed. If no applications are active, it could display the system preferences.314

Some vehicles may not have such a hard key, in which case the functionality315

should be ignored.316

10

Existing preferences systems317

This chapter describes the conceptual model, user experience and design ele-318

ments used in various non-Apertis operating systems’ support for preferences319

and persistent data, because it might be useful input for decision-making. Where320

available, it also provides some details of the implementations of features that321

seem particularly interesting or relevant.322

GNOME Linux desktop323

Preferences324

On a modern GNOME desktop, from which Apertis uses a lot of components,325

settings are stored in multiple places.326

• System settings: Stored in /etc by each system service, typically in a327

text file with a service-specific format. A lot of them have a system-wide328

default value, and may be overridden per user (for example, each user can329

set their own timezone and locale, with a system-wide default).330

• User settings: Defined by shared GSettings schemas (such as331

org.gnome.system.locale), or schemas specific to individual user services332

(such as org.freedesktop.Tracker). The values are stored in dconf (see333

below).334

• App settings: Defined by app-specific GSettings schemas. The values335

are stored in dconf (see below).336

dconf9 supports multiple layered databases, each stored separately. For each337

settings key, a value set for it in one layer overrides any values set in the layers338

below. The bottom (read-only) layer is always the set of default values which339

are provided by the schema file. This layered approach allows the system admin-340

istrator to change settings system-wide in a system database, but also allows341

users to override those settings in their per-user database. It allows a user to342

reset all their settings by deleting their per-user database — at which point,343

the values from the next layer down (typically either a system database or the344

defaults from schema files) will be used for all settings keys.345

Lockdown10 is supported in dconf in the opposite direction: keys may be locked346

down at a particular level, and may not be set at levels above that one (but347

may be set at levels below it, as defaults).348

Architecturally, dconf allows direct read-only access to all databases — each349

app reads settings values directly from the database. Writes to the databases350

are arbitrated through a per-user dconf daemon which then forces each app to351

refresh its read-only view of the settings. This allows for fast concurrent reads352

of settings, at the cost of making writes expensive.353

9https://developer.gnome.org/dconf/unstable/dconf-overview.html
10https://developer.gnome.org/dconf/unstable/dconf-overview.html#id-1.2.7

11

https://developer.gnome.org/dconf/unstable/dconf-overview.html
https://developer.gnome.org/dconf/unstable/dconf-overview.html#id-1.2.7
https://developer.gnome.org/dconf/unstable/dconf-overview.html
https://developer.gnome.org/dconf/unstable/dconf-overview.html#id-1.2.7

dconf does not support access controls, and does not support storing different354

schemas in different databases at the same layer. Hence a user either has write355

access to the whole of a system database, or write access to none of it. As the356

dconf daemon runs per user, any app accessing the daemon may write to any357

settings key, either its own app settings, another app’s settings, or the user’s358

settings.359

Persistent data360

Persistent data is stored in application-defined formats, in application-defined361

locations, although many follow the XDG Base Directory Specification11, which362

puts cache data in XDG_CACHE_HOME (typically ~/.cache) and non-cache363

data in XDG_DATA_HOME (typically ~/.local/share). Below these two direc-364

tories, applications create their own directories or files as they see fit. There is365

no security separation between applications, but the normal UNIX permissions366

restrict access to only the current user.367

There are no APIs available in GNOME for automatically persisting an entire368

application’s state — if an application wishes to do this, it must implement its369

own serialisation and deserialisation functions and save to a file, as above.370

Secrets and passwords371

On a GNOME or KDE desktop, all user secrets, passwords and credentials are372

stored using the Secret Service12 API. In GNOME, this API is implemented by373

GNOME Keyring; in KDE, by KWallet.374

The API13 allows storage of byte array ‘secrets’ (such as passwords), along375

with non-secret attributes used to look them up, in an encrypted storage file376

which must be unlocked by the user before it can be accessed by applications.377

Unlocking it may be automatic if the user does not set a password on the file378

(or if the password is identical to the user’s login password). Secrets are stored379

in ‘collections’, which may group them for different purposes, and which are380

encrypted separately.381

An application must open a session with the secret service in order to access382

secrets. The session may be used to encrypt secrets while they are in tran-383

sit between the service and application, and allows for encryption algorithm384

negotiation for this purpose.385

For certain actions, the secret service may need to interact directly with the user386

in order to establish a trusted path to the user, and avoid (for example) requiring387

the user to enter their password into a potentially untrusted application for that388

application to forward it to the service.389

11http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
12http://standards.freedesktop.org/secret-service/
13http://standards.freedesktop.org/secret-service/pt02.html

12

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://standards.freedesktop.org/secret-service/
http://standards.freedesktop.org/secret-service/pt02.html
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://standards.freedesktop.org/secret-service/
http://standards.freedesktop.org/secret-service/pt02.html

Android390

Preferences391

Apps can use the SharedPreferences class14 to read and write preferences from392

named preferences files, with apps typically using a single preferences file with393

a default name. These files are stored per-app, and are private to that app by394

default, but may be shared with other apps, either read-only or read–write.395

Preferences are strongly typed, and default values are provided by the app at396

runtime. There is no concept of layering or of schemas — all definition of the397

preferences files is handled at runtime.398

Preferences are saved to disk immediately.399

Android uses a custom XML format15 to allow apps to define preference UIs400

(known as ‘activities’ in Android terminology). This format can define sim-401

ple lists of preferences, through to complex UIs with grouped preferences, sub-402

screens, lists of subscreens, and custom preference widgets. Implementing fea-403

tures such as making one preference conditional on another is possible, but404

requires complex XML.405

A PreferenceFragment16 can be used to automatically build a screen in an ap-406

plication to display preferences, loading them from the XML file. It will load407

the current values of the preferences from the SharedPreferences store, and will408

write new values back to the store as the preferences are modified in the UI.409

In order for the system to display the preferences for a particular application,410

it must execute one or more of the PreferencesFragment classes from that ap-411

plication.412

Persistent data413

Android offers several options for persistent data17:414

• Internal storage: Files in a per-(user, app) directory, which may option-415

ally be made world-readable or writable to allow access to other apps or416

users (though this is strongly discouraged).417

• External storage: Files in a world-readable storage area which is418

accessible to the user, such as an SD card. Accessible to all other419

apps and users which hold the READ_EXTERNAL_STORAGE or420

WRITE_EXTERNAL_STORAGE permissions.421

• SQLite database: Arbitrary app-defined tables in a per-(user, app)422

SQLite database. This cannot be shared with other apps or users.423

14http://developer.android.com/guide/topics/data/data-storage.html#pref
15http://developer.android.com/guide/topics/ui/settings.html#DefiningPrefs
16http://developer.android.com/guide/topics/ui/settings.html#Fragment
17http://developer.android.com/guide/topics/data/data-storage.html

13

http://developer.android.com/guide/topics/data/data-storage.html#pref
http://developer.android.com/guide/topics/ui/settings.html#DefiningPrefs
http://developer.android.com/guide/topics/ui/settings.html#Fragment
http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/guide/topics/data/data-storage.html#pref
http://developer.android.com/guide/topics/ui/settings.html#DefiningPrefs
http://developer.android.com/guide/topics/ui/settings.html#Fragment
http://developer.android.com/guide/topics/data/data-storage.html

• Network connection: Using the normal networking APIs, Android sug-424

gests that data can be stored on servers controlled by the app developers.425

It provides no special API for this.426

For saving an application’s state, Android offers a persistence API on the Ac-427

tivity class18. This automatically saves the state of all UI elements (such as428

the text in an entry widget, and the position of a list), but cannot automati-429

cally save application-specific internal state (member variables). For this, the430

application must override two toolkit methods (onSaveInstanceState() and on-431

RestoreInstanceState()) and implement its own serialisation and deserialisation432

of state to a set of key–value pairs which are then stored by Android.433

Secrets and passwords434

Android recommends storing secrets and passwords in two ways. For authen-435

tication credentials for online services, it provides an AccountManager API19436

which abstracts authentication for known online services (which are supported437

by pluggable backends, potentially provided by application bundles) and stores438

the credentials in an OS-wide store. The service handles authenticating and439

re-authenticating when the login session ends.440

For secrets which are not for online accounts, or otherwise do not fit the Account-441

Manager pattern, Android recommends20 using the normal preferences API (442

Preferences), as while preferences are not encrypted in storage, they are only443

accessible to the application which owns them, so cannot be stolen by other444

applications. However, if the sandboxing system is compromised (potentially445

by an attacker with physical access to the device), the stored secrets will be446

accessible in plaintext.447

iOS448

Preferences449

iOS stores preferences as key–value pairs21, which are separated into domains450

by user, application and machine. The same preference may be set in multiple451

domains22, and they are searched in a defined priority order to determine which452

value to use. This means that an application may, for example, choose to share453

a given preference between all users of that application on a given machine.454

Application IDs use the standard reverse domain name syntax to ensure unique-455

ness.456

18http://developer.android.com/training/basics/activity-lifecycle/recreating.html
19http://developer.android.com/reference/android/accounts/AccountManager.html
20http://stackoverflow.com/questions/785973/what-is-the-most-appropriate-way-to-store-

user-settings-in-android-application/786588#786588
21https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/

CFPreferences/CFPreferences.html#//apple_ref/doc/uid/10000129-SW1
22https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/

CFPreferences/Concepts/PreferenceDomains.html

14

http://developer.android.com/training/basics/activity-lifecycle/recreating.html
http://developer.android.com/training/basics/activity-lifecycle/recreating.html
http://developer.android.com/training/basics/activity-lifecycle/recreating.html
http://developer.android.com/reference/android/accounts/AccountManager.html
http://stackoverflow.com/questions/785973/what-is-the-most-appropriate-way-to-store-user-settings-in-android-application/786588#786588
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/CFPreferences.html#//apple_ref/doc/uid/10000129-SW1
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/PreferenceDomains.html
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/PreferenceDomains.html
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/PreferenceDomains.html
http://developer.android.com/training/basics/activity-lifecycle/recreating.html
http://developer.android.com/reference/android/accounts/AccountManager.html
http://stackoverflow.com/questions/785973/what-is-the-most-appropriate-way-to-store-user-settings-in-android-application/786588#786588
http://stackoverflow.com/questions/785973/what-is-the-most-appropriate-way-to-store-user-settings-in-android-application/786588#786588
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/CFPreferences.html#//apple_ref/doc/uid/10000129-SW1
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/CFPreferences.html#//apple_ref/doc/uid/10000129-SW1
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/PreferenceDomains.html
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/PreferenceDomains.html

Preference values may be any type supported by Core Foundation property457

lists23, including strings, integers and arrays. Default values must be coded into458

the application.459

Preference keys may be generated at runtime by the application, and do not have460

to be defined in a schema in advance. However, it is typical to use pre-defined461

property lists.462

Preferences are synchronised with the on-disk store manually, so the application463

chooses when they are written to disk.464

On certain Apple operating systems, preferences may be ‘managed’ by the ad-465

ministrator24, setting an override value which overrides any value set by the466

user for a given preference key.467

Application preferences can either be presented as part of the application, using468

normal UI widgets, and accessing the NSUserDefaults class25 for the preference469

values. Or they can be presented as part of the system-wide settings applica-470

tion26, which builds the UI for each application’s preferences dynamically from471

that application’s property list file for preferences. An application may provide472

multiple property list files to build a hierarchy of preferences pages. The system-473

wide settings application accesses NSUserDefaults on behalf of the application474

to update the stored preferences.475

Persistent data476

iOS offers several options for persistent data:477

• Filesystem: Arbitrary files may be written to the filesystem in various478

app-specific locations27.479

• Core Data API: This is an object-graph management API28, which480

allows versioned control of instances of objects created from a schema.481

Instead of being used by an application to persist data, this API is designed482

to form the core of the application’s data model. It supports editing and483

discarding edits, undo, redo, versioning of the object schema, and large484

data sets.485

23https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/
CFPropertyLists/CFPropertyLists.html#//apple_ref/doc/uid/10000130i

24https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/
CFPreferences/Concepts/BestPractices.html#//apple_ref/doc/uid/TP30001219-118191

25https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/
Classes/NSUserDefaults_Class/index.html#//apple_ref/occ/cl/NSUserDefaults

26https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/
UserDefaults/Preferences/Preferences.html#//apple_ref/doc/uid/10000059i-CH6-SW6

27https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/
FileSystemProgrammingGuide/AccessingFilesandDirectories/AccessingFilesandDirectories.
html#//apple_ref/doc/uid/TP40010672-CH3-SW11

28https://developer.apple.com/library/prerelease/ios/documentation/DataManagement/
Devpedia-CoreData/coreDataOverview.html#//apple_ref/doc/uid/TP40010398-CH28

15

https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPropertyLists/CFPropertyLists.html#//apple_ref/doc/uid/10000130i
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPropertyLists/CFPropertyLists.html#//apple_ref/doc/uid/10000130i
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPropertyLists/CFPropertyLists.html#//apple_ref/doc/uid/10000130i
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/BestPractices.html#//apple_ref/doc/uid/TP30001219-118191
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/BestPractices.html#//apple_ref/doc/uid/TP30001219-118191
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/BestPractices.html#//apple_ref/doc/uid/TP30001219-118191
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSUserDefaults_Class/index.html#//apple_ref/occ/cl/NSUserDefaults
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults/Preferences/Preferences.html#//apple_ref/doc/uid/10000059i-CH6-SW6
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults/Preferences/Preferences.html#//apple_ref/doc/uid/10000059i-CH6-SW6
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults/Preferences/Preferences.html#//apple_ref/doc/uid/10000059i-CH6-SW6
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/AccessingFilesandDirectories/AccessingFilesandDirectories.html#//apple_ref/doc/uid/TP40010672-CH3-SW11
https://developer.apple.com/library/prerelease/ios/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html#//apple_ref/doc/uid/TP40010398-CH28
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPropertyLists/CFPropertyLists.html#//apple_ref/doc/uid/10000130i
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPropertyLists/CFPropertyLists.html#//apple_ref/doc/uid/10000130i
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/BestPractices.html#//apple_ref/doc/uid/TP30001219-118191
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/BestPractices.html#//apple_ref/doc/uid/TP30001219-118191
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSUserDefaults_Class/index.html#//apple_ref/occ/cl/NSUserDefaults
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSUserDefaults_Class/index.html#//apple_ref/occ/cl/NSUserDefaults
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults/Preferences/Preferences.html#//apple_ref/doc/uid/10000059i-CH6-SW6
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults/Preferences/Preferences.html#//apple_ref/doc/uid/10000059i-CH6-SW6
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/AccessingFilesandDirectories/AccessingFilesandDirectories.html#//apple_ref/doc/uid/TP40010672-CH3-SW11
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/AccessingFilesandDirectories/AccessingFilesandDirectories.html#//apple_ref/doc/uid/TP40010672-CH3-SW11
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/AccessingFilesandDirectories/AccessingFilesandDirectories.html#//apple_ref/doc/uid/TP40010672-CH3-SW11
https://developer.apple.com/library/prerelease/ios/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html#//apple_ref/doc/uid/TP40010398-CH28
https://developer.apple.com/library/prerelease/ios/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html#//apple_ref/doc/uid/TP40010398-CH28

• Property List API: A property list is a hierarchical, structured piece486

of data, consisting of primitive data types, arrays and dictionaries which487

may be nested arbitrarily29. Property lists can therefore be used to store488

arbitrary application data. There is an API to serialise them to the file489

system.490

• SQLite: The standard SQLite API may be used, backed by a file, to store491

relational data in a database.492

For persisting an entire application’s state, iOS provides a solution30 simi-493

lar to [Android][Persistent data]. The developer must annotate each UI view494

class which needs to be saved and restored, and the UI toolkit will automati-495

cally persist the state of the widgets in that view when the application is sus-496

pended. As with Android, the developer must implement two methods for497

serialising and deserialising application-specific state from member variables:498

encodeRestorableStateWithCoder and decodeRestorableStateWithCoder.499

Secrets and passwords500

iOS uses the same keychain API31 as OS X. This provides a system service for501

storing secrets, passwords and certificates. They are encrypted in storage, using502

an encryption key which is derived from the iOS application’s ID and the user’s503

password.504

The keychain is encrypted in backups, and stored without its encryption key, so505

an attacker cannot extract secrets from backups.506

An iOS application can access the secrets it has stored in the keychain, but507

cannot access secrets from other applications. There is no way to (for example)508

share login details for a given website between all applications which access509

that website — they must all query the user for the details and store them510

separately. This differs from OS X, where all applications can access any stored511

secrets, subject to the user approving the access (trusting the application).512

GENIVI513

Preferences and persistent data514

GENIVI does not differentiate between preferences and persistent data, and515

provides one low-level API for saving and loading persistent data. It does not516

support automatically persisting an entire application’s state.517

29https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/
PropertyLists/AboutPropertyLists/AboutPropertyLists.html

30https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/
PreservingandRestoringState.html

31https://developer.apple.com/library/ios/documentation/Security/Conceptual/
keychainServConcepts/01introduction/introduction.html#//appl_ref/doc/uid/TP30000897-
CH203-TP1

16

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/AboutPropertyLists/AboutPropertyLists.html
https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/PreservingandRestoringState.html
https://developer.apple.com/library/ios/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html#//appl_ref/doc/uid/TP30000897-CH203-TP1
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/AboutPropertyLists/AboutPropertyLists.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/AboutPropertyLists/AboutPropertyLists.html
https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/PreservingandRestoringState.html
https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/PreservingandRestoringState.html
https://developer.apple.com/library/ios/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html#//appl_ref/doc/uid/TP30000897-CH203-TP1
https://developer.apple.com/library/ios/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html#//appl_ref/doc/uid/TP30000897-CH203-TP1
https://developer.apple.com/library/ios/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html#//appl_ref/doc/uid/TP30000897-CH203-TP1

The GENIVI [Persistence Management system][GENIVI-persistence] handles all518

data read and written during the lifetime of an IVI system. It aims to provide519

a standard API for all GENIVI platforms to use, which reliably stores data520

in the face of power disturbances, and the limited write-cycle lifetime of some521

non-volatile storage devices (flash memory).522

It is split into four components:523

• Client library: API for writing key–value or arbitrary data to a file, which524

may be used by only the current application, or shared between all appli-525

cations.526

• Administration service: system for installing default values and configu-527

ration for the data storage for each application; backing up and restoring528

stored data; and implementing factory reset of data.529

• Common object: used by the other components to access key–value530

databases through a caching layer.531

• Health monitor: system under development to implement data recovery532

in the case of corruption or loss, using existing backups.533

The GENIVI Persistence Management system only supports storage of data534

as byte arrays — applications must serialise and deserialise their data formats535

themselves. Similarly, it does not implement versioning of stored data.536

The data storage code is implemented as a set of plugins for the client library,537

implementing different methods for storing data. There are various types of plug-538

ins implementing layers of functionality such as hardware information querying,539

encryption, early loading of data, and the default storage backend.540

Key–value data is limited to 16KB per key. Keys are stored per-application,541

namespaced by an application-chosen arbitrary identifier. As persistent data is542

stored in a separate file per application, Unix users and groups may be used to543

enforce access control on the persisted data.544

GENIVI has investigated providing an SQLite API for relational data storage,545

and has provided recommendations for it32, but has not shipped a version with546

SQLite support (as of version 0.3.0 of this document).547

To persist an application’s state, the developer must manually implement seri-548

alisation and deserialisation of all UI and internal state of the application using549

the Persistence client library.550

Secrets and passwords551

Similarly, GENIVI has no specialised API for storing secrets and passwords552

— applications must use the persistence management system. The system does553

32http://docs.projects.genivi.org/persistence-client-library/1.0/Persistence_
ClientLibrary_UserGuide.pdf

17

http://docs.projects.genivi.org/persistence-client-library/1.0/Persistence_ClientLibrary_UserGuide.pdf
http://docs.projects.genivi.org/persistence-client-library/1.0/Persistence_ClientLibrary_UserGuide.pdf
http://docs.projects.genivi.org/persistence-client-library/1.0/Persistence_ClientLibrary_UserGuide.pdf

allow for encrypted storage of persistent data using a plugin — but that encrypts554

all stored data, including preferences and application state.555

Approach556

Preferences and persistent data have largely separate requirements: preferences557

are small amounts of data; need to be accessed by multiple components; will558

typically be read much more frequently than they are written; and need to559

support features like Vendor overrides andvendor lockdown. Persistent data may560

vary from small to large amounts of data; will be read and written frequently;561

in app-specific formats; and do not need to be accessed by other components.562

The expected amount of data to be stored, and the relative frequency of reads563

and writes of that data, is an important factor in the choice of storage format564

to use. Preferences should be stored in a format which is optimised for reads;565

persistent data should be stored in a format which is optimised for frequent566

reads and writes, since apps should update it frequently as they may be killed567

at any time.568

For these reasons, we suggest preferences and persistent data are handled en-569

tirely separately. The following sections (6 and 7) will cover them separately,570

giving our recommended approach and justifications which refer back to the571

requirements (section 3).572

User secrets and passwords (Storage of user secrets and passwords) have differ-573

ent requirements again:574

• Confidentiality in storage (encryption).575

• Sharing secrets and passwords for a given resource (such as website) be-576

tween all applications using that website (i.e. secrets and passwords are577

not necessarily specific to an application, while preferences typically are).578

• No fixed schema: the credentials required to access a given service (such579

as website) may change over time as that service changes.580

As the system explicitly does not support full-disk encryption (for performance581

reasons), user secrets and passwords should be stored via the freedesktop.org582

Secrets D-Bus API33, rather than the preferences or persistence APIs. The583

Secrets D-Bus API explicitly handles encryption of the secret store, whereas a584

general design for a preferences system should have no need for encryption, and585

hence adding it to the API would be an unnecessary complication for 90% of the586

use cases. Accordingly, confidential data will not be considered in the approach587

below.588

For further discussion and designs on the topic of secrets and passwords, see the589

Security design document34.590

33http://standards.freedesktop.org/secret-service/
34https://jwd.pages.apertis.org/apertis-website/concepts/security/

18

http://standards.freedesktop.org/secret-service/
https://jwd.pages.apertis.org/apertis-website/concepts/security/
http://standards.freedesktop.org/secret-service/
https://jwd.pages.apertis.org/apertis-website/concepts/security/

Preferences approach591

Overall architecture592

Access to app, user and system settings should be through the GSettings API,593

most likely backed by dconf. (Refer to GNOME Linux desktop for an overview594

of the way GSettings and dconf fit together.) As system settings are defined as595

those settings which are accessed by multiple components, settings which are596

solely for the use of a single system service may be stored in other ways, and597

are beyond the scope of this document.598

Each component should have its own GSettings schema:599

• App schemas: In the form net.example.MyApplication.SchemaName.600

Each app may have zero or more schemas, but all must be prefixed by the601

app ID (in this case, net.example.MyApplication; see the Applications602

Design document for details on the application ID scheme) to provide a603

level of namespacing.604

• User schemas: These may have any form, and will typically re-use exist-605

ing cross-desktop schemas, such as org.gnome.system.locale, as these are606

supported by many existing software components used by Apertis.607

• System schemas: These may have any form, similarly.608

Schema files for apps should be packaged with their app. For user services,609

they could be packaged with the most relevant service, or in a general purpose610

gsettings-desktop-schemas package (adapted from Debian) and an accompany-611

ing apertis-schemas package for Apertis-specific schemas.612

All reads and writes of all settings should go through the normal GSettings613

interface — leaving access controls and policy to be implemented in the backend.614

App code therefore does not need to treat reads and writes differently, or treat615

app, user and system settings differently.616

The use of GSettings also means that a single schema may be instantiated at617

multiple schema paths. Typically, a schema will only be instantiated at the path618

matching its ID; but a relocatable schema may be instantiated at other paths.619

This can be used to store settings for multiple accounts, for example.620

It is expected that each app will handle any upgrades to its preference schemas,621

for example from one major version of the app to the next (System and app622

bundle upgrades). Apertis will not provide any special APIs for this. As this623

is highly dependent on the structure of the preference keys an app is storing,624

Apertis can provide no recommendations here. Note, however, that GSettings625

is designed with upgradability in mind: new preference keys take their value626

from the schema-provided defaults until the user sets them; the values for old627

preferences which are no longer in the schema are ignored. It is recommended628

that the type or semantics of a given GSettings key is not changed between629

versions of an app bundle — if it needs to be changed, stop using the old key,630

19

migrate its stored value to a new key, and use the new key in newer versions of631

the app bundle.632

Requirements633

Through the use of the GSettings API, the following requirements are automat-634

ically fulfilled:635

• Writability — using g_settings_is_writable()636

• System and app bundle upgrades — old keys are either kept, or superseded637

by new keys with migrated values if their type or semantics change638

• Factory reset — for individual keys, using g_settings_reset(); support for639

resetting entire schemas needs to be supported by the designs below640

• Abstraction level — GSettings serves as the abstraction layer, with the641

individual backends below adding no further abstractions642

• Transactional updates — GSettings provides g_settings_delay(),643

g_settings_apply() and g_settings_revert() to implement in-memory644

transactions which are serialised in the backend on calling apply645

• Concurrency control — g_settings_get() automatically returns the de-646

fault value if no user-set value exists; there is no atomic API for setting647

settings648

• User interface — g_settings_bind() can be used to bind a GSettings key649

to a particular UI widget, allowing interface UIs to be built easily (not-650

ing the argument in User interface that preferences UIs should not be651

automatically generated)652

Other requirements are fulfilled separately:653

• Control over user interface — by generating preferences windows from654

GSettings schemas in the system preferences application (Searchable pref-655

erences)656

• Rearrangeable preferences — by hard-coding more behaviour in the system657

preferences application (User interface)658

• Searchable preferences — searching over summaries and descriptions in659

GSettings schemas (Security policy)660

• Storage of user secrets and passwords — using the freedesktop.org Secrets661

D-Bus API as in the Security design (section 5)662

-preferences hard key — implemented according to the Hard Keys design pref-663

erences hard key1)664

20

Proxied dconf backend665

In its current state (May 2015, detailed in GNOME Linux desktop), dconf does666

not support the necessary fine-grained access controls for multiple components667

accessing the preferences. However, a design is being implemented upstream to668

proxy access to dconf through a separate service which imposes access controls669

based on AppArmor (mostly implemented as of January 201635).670

On the assumption that this work can be completed and integrated into Apertis671

on an appropriate timescale (see Summary of recommendations), this leads to672

a design where the dconf daemon runs as a system service, storing all settings673

in one database file per default layer:674

• App database: /Applications/net.example.MyApplication/username/config/dconf/app675

• User database: ~/.config/dconf/user676

• System database: /etc/dconf/db/local677

This would be implemented as the dconf profile:678

user-db:user679

file-db:/Applications/net.example.MyApplication/username/config/dconf/app680

system-db:local681

All accesses to dconf would go through GSettings, and then through the proxy682

service which applies AppArmor rules to restrict access to specific settings,683

implementing the chosen security policy (Access permissions). The rules may,684

for example, match against settings path and the AppArmor label of the calling685

process.686

The proxy service would therefore implement a system preferences service.687

Vendor lockdown is supported already by dconf36 through the use of lockdown688

files, which specify particular keys or settings sub-trees which may not be mod-689

ified.690

[Rollback][Rollback] is supported by having one database file per (user, app)691

pair, which can be snapshotted and rolled back using the normal app snapshot692

mechanism described in the Applications Design. dconf will detect the rollback693

of the database and reload it.694

Resetting all system settings would be a matter of deleting the appropriate695

databases — the keys in that database will revert to the default values provided696

by the schema files. As this is a simple operation, it does not have to be imple-697

mented centrally by a preferences service. Resetting the value of an individual698

key is supported by the g_settings_reset() API, which is already implemented699

as part of GSettings.700

The existing Apertis system puts701

35https://git.collabora.com/cgit/user/xclaesse/appservice.git
36https://developer.gnome.org/dconf/unstable/dconf-overview.html

21

https://git.collabora.com/cgit/user/xclaesse/appservice.git
https://developer.gnome.org/dconf/unstable/dconf-overview.html
https://git.collabora.com/cgit/user/xclaesse/appservice.git
https://developer.gnome.org/dconf/unstable/dconf-overview.html

include <abstractions/gsettings>702

in several of the AppArmor profiles, which gives unrestricted access to the user703

dconf database. This must change with the new system, only allowing the dconf704

daemon access to the database.705

Requirements706

This design fulfills the following requirements:707

• Access permissions — through use of the proxy service and AppArmor708

rules709

• Rollback — by rolling back the user’s per-app database710

• Factory reset — by deleting the user’s database or the user’s per-app711

database712

• Minimising io bandwidth — dconf’s database design is optimised for this713

• Atomic updates — dconf performs atomic overwrites of the database714

• Performance tradeoffs — dconf is heavily optimised for reads rather than715

writes716

• Data size tradeoffs — dconf uses GVDB for storage, so can handle small717

to large amounts of data718

• Vendor overrides — dconf supports vendor overrides inherently719

-vendor lockdown — dconf supports vendor lockdown inherently720

Development backend721

In the interim, we recommend that the standard dconf backend be used to store722

all system, user and app settings. This will not allow for access controls to be723

applied to the settings (Access permissions), but will allow for app development724

against the final GSettings interface.725

Once the proxied dconf backend is ready, it can be packaged and the system726

configuration changed — no changes should be necessary in user services or apps727

to make use of the changed backend.728

This development backend would support vendor lockdown as normal. It would729

support resetting all settings at once, but would not support resetting an indi-730

vidual app’s settings (or rolling them back) independently of other apps, as all731

settings are stored in the same dconf database file.732

Requirements733

This design fails the following requirements:734

• Access permissions — unsupported by the current version of dconf735

22

• Rollback — unsupported by the current version of dconf736

It supports the following requirements:737

• Factory reset — partially supported by deleting the user’s database;738

resetting a (user, app) pair is not supported as all settings are stored in739

the same dconf database file740

• Minimising io bandwidth — dconf’s database design is optimised for this741

• Atomic updates — dconf performs atomic overwrites of the database742

• Performance tradeoffs — dconf is heavily optimised for reads rather than743

writes744

• Data size tradeoffs — dconf uses GVDB for storage, so can handle small745

to large amounts of data746

• Vendor overrides — dconf supports vendor overrides inherently747

-vendor lockdown — dconf supports vendor lockdown inherently748

Key-file backend749

As an alternative, if it is felt that the development backend is too simplistic750

to use in the interim before the proxied dconf backend is ready, the GSettings751

key-file backend could be used. This would allow enforcement of access controls752

via AppArmor, at the cost of:753

• lower read performance due to not being optimised for reads (or in gen-754

eral);755

• requiring code changes in user services and apps to switch from the key-file756

backend to the proxied dconf backend once it’s ready;757

• requiring settings values to be migrated from the key-file store to dconf at758

the time of switch over;759

• not supporting vendor lockdown or vendor overrides.760

Due to the need for code changes to switch away from this backend to a more761

suitable long-term solution such as the proxied dconf backend, we do not rec-762

ommend this approach.763

In detail, the approach would be to use a separate key file for each schema in-764

stance, across all system services, user services and apps. This would require us-765

ing g_settings_key_file_backend_new() and g_settings_new_with_backend_and_path()766

to manually construct the GSettings instance for each schema, using a key file767

path which corresponds to the schema path.768

Access control for each schema instance would be enforced using AppArmor769

rules which restrict access to each key file as appropriate. For example, apps770

23

would be given read-only access to the key files for system and user settings,771

and read–write access to the key file for their own app settings.772

Vendor lockdown would be supported by vendors patching the AppArmor files773

to limit write access to specific schema instances. It would not support per-key774

lockdown at the granularity supported by dconf.775

This code for creating the GSettings object could be abstracted away by a helper776

library, but the API for that library would have to be stable and supported777

indefinitely, even after changing the backend.778

Requirements779

This design fails the following requirements:780

• Performance tradeoffs — GKeyFile is equally non-optimised for reads781

and writes782

• Vendor overrides — unsupported by GKeyFile783

-vendor lockdown — unsupported by GKeyFile784

It supports the following requirements:785

• Access permissions — supported by AppArmor rules on the per-schema786

key files787

• Rollback — by snapshotting and rolling back the appropriate key files788

• Factory reset — by deleting the appropriate key files789

• Minimising io bandwidth — GKeyFile’s I/O bandwidth is proportional to790

the number of times each key file is loaded and saved791

• Atomic updates — GKeyFile performs atomic overwrites of the database792

• Data size tradeoffs — GKeyFile’s load and save performance is propor-793

tional to the amount of data stored in the file, so it is suitable for small794

amounts of data795

Security policy796

All three potential backends enforce security policy through per-app AppArmor797

rules (if they support implementing security policy at all — the Development798

backend, does not).799

It is beyond the scope of this document to define how each app ships its AppAr-800

mor rules, and how Apertis can guarantee that third-party apps cannot grant801

themselves higher privileges using additional rules. The suggestion in section802

8.3 of the Applications Design document is for the AppArmor rule set for an803

app to be automatically generated from the app’s manifest file by the app store804

24

(which is trusted). The manifest file could contain permissions such as ‘can-805

change-locale’ or ‘can-add-network’ which would translate to AppArmor rules806

allowing an app write access to the relevant user and system settings.807

Additionally, by generating AppArmor rules from an app’s manifest, the precise808

format of the AppArmor rules is abstracted, allowing the preferences backend809

to be switched in future (just as app access to preferences is abstracted through810

GSettings).811

User interface812

Different options for building preferences user interfaces need to be supported813

by the system (Control over user interface):814

• Individual preferences embedded at different points in the application UI.815

• A preferences window implemented within the application.816

• A system preferences application which controls displaying the preferences817

for all installed applications, plus system preferences.818

In all cases, we recommend that preferences are defined using GSettings819

schemas, as discussed in Overall architecture, and that settings are read and820

written through the GSettings37 API. This ensures that access control is821

enforced, and separates the structure of the preferences (including types and822

default values) from their presentation.823

The choice of how preferences are presented ultimately lies with the vendor. In824

certain cases, an application may choose to display a preference embedded into825

its UI (for example, as a satellite/hybrid/standard view selector overlaid on a826

map view), if it makes sense for that preference to be displayed in-context as827

opposed to in a preferences window. This user experience is something which828

should be checked as part of app validation.829

The majority of preferences should be displayed in a separate preferences win-830

dow. In order to allow this window to be embedded into a system preferences831

application if the vendor desires it, the preferences window must be automati-832

cally generated. This is because:833

• arbitrary code from arbitrary applications must not be run in the context834

of the system preferences application; and835

• the system preferences application cannot be shipped with manually-coded836

preferences windows for all applications which could ever be installed.837

However, automatically generated UIs generally give a bad user experience, due838

to the limited flexibility a designer has on them, so are suitable only for basic839

preferences (such as toggle switches; see Discussion of automatically generated840

37https://developer.gnome.org/gio/stable/GSettings.html#GSettings.description

25

https://developer.gnome.org/gio/stable/GSettings.html#GSettings.description

versus manually coded preferences UIs). There may be cases where an appli-841

cation has a particular preference which Apertis provides no widgets suitable842

for editing it. In these infrequent cases, it must be possible for the system843

preferences application to execute a stand-alone preferences window from the844

application to set that particular preference.845

System preferences application846

If an application has preferences, it must give the path to the GSettings schema847

file which defines them in its application manifest.848

The system preferences application should display a list of applications as its849

initial screen, including entries for system preferences which it implements itself.850

The applications listed should be the ones whose manifests specify GSettings851

schema files, and the application name and icon should also be retrieved from852

the application manifest and displayed.853

If the user selects an application, a preferences window should be displayed854

which shows all the preferences in the application’s GSettings schema file. See855

Generating a preferences window from a GSettings schema file for details of how856

this is done. Note that if the schema file defines multiple levels of schema, they857

should be presented as a hierarchy of pages, with preferences only being shown858

on leaf pages.859

As a system application, the system preferences application would have permis-860

sion to read and write any application settings via GSettings, so forms part of861

the trusted computing base (TCB) for preferences.862

The vendor may choose the security policy for which users may edit system863

preferences (such as the language or background) — they could either allow all864

users to edit these, or only allow administrative users (such as the vehicle owner)865

to edit them. If so, we recommend showing the entries for these preferences866

anyway, but making the widgets insensitive and presenting an authentication867

dialogue for the administrator to authenticate with before allowing the settings868

to be edited, see the Multi-User Transactional Switching document38.869

Per-application preferences windows870

If the vendor wishes to implement a user experience where each application871

shows its own preferences window, this should be implemented using the system872

preferences application in a different mode. A settings button or menu entry in873

the application should launch the system preferences application.874

It should support being launched with the name of a GSettings schema to show,875

and it would render a preferences window from that schema (see Generating a876

preferences window from a GSettings schema file). If the schema file defines877

38https://jwd.pages.apertis.org/apertis-website/concepts/multiuser-transactional-
switching/

26

https://jwd.pages.apertis.org/apertis-website/concepts/multiuser-transactional-switching/
https://jwd.pages.apertis.org/apertis-website/concepts/multiuser-transactional-switching/
https://jwd.pages.apertis.org/apertis-website/concepts/multiuser-transactional-switching/

multiple levels of schema, they should be presented as a hierarchy of pages,878

with preferences only being shown on leaf pages. It is up to the vendor whether879

the user can navigate ‘up’ from the top level of the schema to a list of all880

applications.881

As the system preferences application is part of the TCB for preferences, it882

must not allow an application to launch it with the name of a GSettings schema883

file which does not belong to that application. For example, that would al-884

low one application to trick the user into editing their preferences for another885

application.886

Generating a preferences window from a GSettings schema file887

A GSettings schema file39 can be turned into a UI using the following rules:888

• A <schema> element is turned into a preference page. If it has an ex-889

tends attribute, the widgets from the schema it extends are added to the890

preferences page first.891

• The first non-relocatable <schema> element in a <schemalist> will be892

taken as providing the preferences page for the application. Subsequent893

<schema> elements will be ignored unless pulled in as preferences sub-894

pages using a <child> element.895

• A <child> element is turned into an entry to show a preferences sub-page896

for the corresponding sub-schema. The label for this entry should come897

from a new (non-standard) label attribute on the <child> element.898

• Relocatable <schema> elements (those without a path attribute) are ig-899

nored unless pulled in as a preferences sub-page using a <child> element.900

• A <key> element is turned into a widget with its label set from the901

<summary> element and its description set from the <description> ele-902

ment. The type of widget is set by the type attribute, which specifies a903

GVariant type40:904

– b (boolean): Switch or checkbox widget.905

– y, n, q, i, u, x, t (integers): Integer spin button. Its range is set to906

the smaller of the bounds of the integer type or the values of the907

<range> element (if present).908

– h (handle): Not supported.909

– d (double): Floating point spin button. Its range is set to the smaller910

of the bounds of the double type or the values of the <range> element911

(if present).912

39https://git.gnome.org/browse/glib/tree/gio/gschema.dtd
40https://developer.gnome.org/glib/stable/glib-GVariantType.html#id-1.6.18.6.9

27

https://git.gnome.org/browse/glib/tree/gio/gschema.dtd
https://developer.gnome.org/glib/stable/glib-GVariantType.html#id-1.6.18.6.9
https://git.gnome.org/browse/glib/tree/gio/gschema.dtd
https://developer.gnome.org/glib/stable/glib-GVariantType.html#id-1.6.18.6.9

– s (string): Text entry widget. If a <choices> element is present, a913

drop-down box should be used instead, displaying the options from914

the <choice> elements.915

– o (object path): Not supported.916

– g (type string): Not supported.917

– ? (basic type): Not supported.918

– v (variant): Not supported.919

– a (array): Not supported in any form.920

– m (maybe): Not supported in any form.921

– (), r (tuple): Not supported in any form.922

– {} (dictionary): Not supported in any form.923

– * (any): Not supported in any form.924

• If a <key> element contains an enum attribute and no type attribute,925

a drop-down box should be used, displaying the options from the nick926

attributes of the <value> elements in the corresponding <enum> element.927

• If a <key> element contains a flags attribute and no type attribute, a928

checkbox list should be used, displaying a checkbox for each each of the929

nick attributes of the <value> elements in the corresponding <flags>930

element.931

• If a key’s name attribute matches a mapping to a wizard application932

(see Support for custom preferences windows) in the application’s man-933

ifest, that key should be displayed as a menu entry which, when selected,934

launches the wizard application as a new window.935

Support for custom preferences windows936

If an application has a particularly esoteric preference or set of preferences which937

are not supported by the generated preferences UI (see Generating a preferences938

window from a GSettings schema file), it may provide a ‘wizard’ application as939

part of its application bundle which allows setting those preferences (and only940

those preferences). For example, this could be used to show a ‘wizard’ for941

configuring an e-mail account; or a map widget for selecting a location.942

A wizard application presents a single window of preferences, and its widgets943

cannot be integrated into a preferences window generated by the system prefer-944

ences application — it must be launched using a menu entry from there.945

The wizard application must be listed in the application’s manifest as part of a946

dictionary which maps GSettings schemas or keys to commands to run.947

28

For example, a particular manifest could map the key /org/foo/MyApp/complex-948

setting to the command my-app –show-complex-setting. Or a manifest could949

map the schema /org/foo/MyApp/EmailAccount to the command my-app950

–configure-email-account.951

Application bundles which contain keys for this in their manifest should be952

subjected to extra app store validation checks, to establish that the wizard953

application’s UI is consistent with other preferences UIs, and that it does not954

implement preferences which should be handled by a generated UI.955

The wizard application must set the relevant preferences itself before exiting,956

and runs with the same privileges as the rest of the application bundle (so will957

only have access to that application’s preferences, as per Security policy).958

It may be necessary for the window manager to treat windows from wizard959

applications specially, so that they appear more like a window which is part of960

the system preferences application than a window from a separate application.961

This can be solved by adding appropriate metadata to the wizard application962

windows so the window manager treats them differently.963

Searchability of preferences964

To allow the system preferences application to search over all applications’ pref-965

erences (Searchable preferences), it must load all the GSettings schemas from966

applications whose manifests specify a schema. Searching must be performed967

over the user-visible parts of the schema (the <summary> and <description>968

elements), and results should be returned as a link to the relevant application969

preferences window. System preferences should be included in the search results970

too.971

Reorganising preferences972

Implementing arbitrary reorganisation of preferences (Rearrangeable prefer-973

ences) is difficult, as that requires an OEM to know the semantics of all prefer-974

ences for all possibly installable applications.975

We recommend that if an OEM wants to present a new group of a certain set976

of preferences, they must choose specific preferences from known applications,977

and implement a custom window in the system preferences application which978

displays those preferences. Each preference should only be shown if the relevant979

application is installed.980

An alternative implementation which is more flexible, but which devolves more981

control to application developers, is to tag each preference in the GSettings982

schemas with well-defined tags which summarise the preference’s semantics.983

For example, an application’s preference for whether to submit usage data to984

the application data could be tagged as ‘privacy’; or a preference determining985

the colour scheme to use in an application could be tagged as ‘appearance’.986

The OEM could then implement a custom preferences window which queries987

29

all installed GSettings schemas for a specific tag and displays the resulting988

preferences. We do not recommend this option, as even with app store validation989

of the chosen tags, this would allow application developers too much control over990

the appearance of a system preferences window.991

Preferences list widget992

In order to help make all preferences UIs consistent (including those imple-993

mented by the vendor, System preferences application; and those implemented994

by application developers as wizard applications, Per-application preferences995

windows), Apertis should provide a standard widget which implements the con-996

version from GSettings schemas to UI as described in Generating a preferences997

window from a GSettings schema file.998

This widget should accept a list of GSettings schema paths to display, and may999

optionally accept a list of keys within those schemas to display (ignoring the1000

others), or to ignore (displaying the others); and should display all those keys1001

as preferences. It should implement reading and writing the keys’ values using1002

the GSettings API, and must assume that the application has permission to do1003

so (see Security policy). It must check for writability of preferences and make1004

them insensitive if they are read-only (seevendor lockdown1). It cannot give the1005

application more permissions than it already has.1006

If application developers use this widget, the vendor can ensure that preferences1007

UIs are consistent between applications and the system preferences application1008

through the theming of the widget.1009

Vendor lockdown1010

If the vendor locks down a key in a GSettings schema for an application (or1011

system preference) vendor lockdown — supported by Proxied dconf backend1012

and Development backend, but not Key-file backend), that is enforced by the1013

underlying settings service (most likely dconf), and cannot be overridden or1014

worked around by applications.1015

However, it is up to applications to reflect whether a preference is read-only1016

(due to being locked down) in their UIs. This is typically achieved by hid-1017

ing a preference or making its widget insensitive. Applications can use the1018

g_settings_is_writable41 method to determine whether a preference is read-1019

only. Any preferences widgets provided by Apertis (Preferences list widget)1020

must implement this already.1021

If an application developer uses a custom widget to display a preference, and1022

forgets to check whether that preference is read-only, their application might1023

enter an inconsistent state (which is their fault), but the system will not let1024

41https://developer.gnome.org/gio/unstable/GSettings.html#g-settings-is-writable

30

https://developer.gnome.org/gio/unstable/GSettings.html#g-settings-is-writable
https://developer.gnome.org/gio/unstable/GSettings.html#g-settings-is-writable

that preference be written. Convenience APIs like g_settings_bind_writable421025

can reduce the risk of this happening.1026

Discussion of automatically generated versus manually coded prefer-1027

ences UIs1028

In an ideal world, our recommendation would be that: while automatically1029

generating preference UIs can rapidly produce rough drafts, in our experience1030

it can never result in a high-quality finished UI with:1031

• logically grouped options;1032

• correctly aligned controls;1033

• a concept of which preferences are most important, which ones are ‘ad-1034

vanced’, and which ones should be hidden;1035

• conditional defaults (for example, when you set up IMAP e-mail, the1036

default port should be 143, except if you have selected old-style SSL in1037

which case it should be 993); and1038

• the ability to hide or disable preferences that do not apply because of1039

the value of another preference (for example, if you switch off Bluetooth1040

completely, then the widget to change the name that is broadcast over1041

Bluetooth should be hidden or disabled).1042

If the uniform appearance of preferences UIs is a concern, we believe this should1043

be addressed through: convention; the default appearance of widgets in the UI1044

toolkit; and the use of a set of human interface guidelines such as the GNOME1045

HIG43. Specifically, we recommend that preferences are:1046

• integrated into the main application UI if there are only a small number1047

of them;1048

• instant-apply44 unless doing so would be dangerous, in which case they1049

should be explicit-apply for all preferences in the dialogue (for example,1050

changing monitor resolutions is dangerous, and hence is explicit-apply);1051

and1052

• grouped logically in the UI.1053

If, after the preferences UIs of several applications have been implemented, some1054

common widget patterns have been identified, we suggest that they could be1055

abstracted out into new widgets in the UI toolkit. The goal of this would be to1056

increase consistency between preferences UIs, without implementing essentially1057

a separate UI toolkit for them, which would be the result of any template- or1058

auto-generation-based approach.1059

42https://developer.gnome.org/gio/stable/GSettings.html#g-settings-bind-writable
43https://developer.gnome.org/hig/stable/dialogs.html.en
44https://developer.gnome.org/hig/stable/dialogs.html.en#instant-and-explicit-apply

31

https://developer.gnome.org/gio/stable/GSettings.html#g-settings-bind-writable
https://developer.gnome.org/hig/stable/dialogs.html.en
https://developer.gnome.org/hig/stable/dialogs.html.en
https://developer.gnome.org/hig/stable/dialogs.html.en
https://developer.gnome.org/hig/stable/dialogs.html.en#instant-and-explicit-apply
https://developer.gnome.org/gio/stable/GSettings.html#g-settings-bind-writable
https://developer.gnome.org/hig/stable/dialogs.html.en
https://developer.gnome.org/hig/stable/dialogs.html.en#instant-and-explicit-apply

An alternative way of thinking about this is that preferences are subject to a1060

model–view split (the model is GSettings schema files; the view is the prefer-1061

ences UI), and it is typically inadvisable to generate a view from a model when1062

following that pattern.1063

However, we realise that the goal of having a unified system preferences ap-1064

plication with a consistent appearance (which is enforced) conflicts with these1065

recommendations, and hence these recommendations are not part of our overall1066

suggested approach.1067

Preferences hard key1068

A preferences hard key must be supported as detailed in the Hard Keys de-1069

sign. In a configuration where a system preferences application is used, it must1070

launch that application, already open on the preferences window for the active1071

application. If no application is active, or if the currently active application has1072

no GSettings schemas listed in its manifest file, the main page of the system1073

preferences application should be shown.1074

In a configuration where applications implement their own preferences windows,1075

the active application must be sent a ‘hard key pressed’ signal for the preferences1076

hard key, which the application can handle how it wishes (i.e. by showing its1077

preferences window). If there is no active application, the system preferences1078

application (which in this configuration only contains system preferences) should1079

be shown.1080

The policy for exactly what happens in each situation and configuration is under1081

the control of the hard keys service, which is provided by the vendor. It should1082

have access to the manifest for the active application so it can find information1083

about GSettings schemas.1084

Existing preferences schemas1085

As GSettings is used widely within the open source software components used1086

by Apertis, particularly GNOME, there are many standard GSettings schemas1087

for common user settings. We recommend that Apertis re-use these schemas as1088

much as possible, as support for them has already been implemented in various1089

components. If that is not possible, they could be studied to ensure we learn1090

from their design successes or failures.1091

• org.gnome.system.locale1092

• org.gnome.system.proxy1093

• org.gnome.desktop.default-applications1094

• org.gnome.desktop.media-handling1095

• org.gnome.desktop.interface1096

32

• org.gnome.desktop.lockdown1097

• org.gnome.desktop.background1098

• org.gnome.desktop.notifications1099

• org.gnome.crypto1100

• org.gnome.desktop.privacy1101

• org.gnome.system.dns_sd1102

• org.gnome.desktop.sound1103

• org.gnome.desktop.datetime1104

• org.gnome.system.location1105

• org.gnome.desktop.thumbnailers1106

• org.gnome.desktop.thumbnail-cache1107

• org.gnome.desktop.file-sharing1108

Various Apertis dependencies (for example, Mutter, Tracker, libfolks, IBus, Geo-1109

clue, Telepathy) use their own GSettings schemas already — as these are not1110

shared, they are not listed.1111

Alternative model: If the locale is a system setting, rather than a user setting,1112

systemd’s localed45 should be used. This would require the locale to be changed1113

via the localed D-Bus API, rather than GSettings, which would affect the im-1114

plementation of the system preferences app.1115

Persistent data approach1116

Overall architecture1117

As discussed in sections 5.3.1 and 7 of the Applications Design, and the Mul-1118

tiuser Design, there is a difference between state which an app needs to persist1119

(for example, if it is being terminated to switch users), and state which an app1120

explicitly needs to share (for example, if a transactional user switch is taking1121

place to execute an action as a different user). The Multiuser Design encourages1122

app authors to think explicitly about these two sets of state, and the differences1123

between them. It is the app which chooses the state to persist, rather than the1124

operating system — storage space is too limited to persist the entire address1125

space of an app, effectively suspending it.1126

The state each app chooses to persist will differ, and cannot be predicted by1127

Apertis. There could be a lot of state, or very little. It could be representable as1128

a simple key–value dictionary, or might have a complex hierarchical structure.1129

45http://www.freedesktop.org/wiki/Software/systemd/localed/

33

http://www.freedesktop.org/wiki/Software/systemd/localed/
http://www.freedesktop.org/wiki/Software/systemd/localed/

Well-known state directories1130

As mentioned in the Applications Design document (sections 5.3.1 and 7),1131

we recommend that Apertis provide a per-(user, app) directory for storage1132

of persisted data, and a public API the app can call to find out that di-1133

rectory. The API should differentiate between cache and non-cache state,1134

with cache state going in $XDG_CACHE_HOME/net.example.MyApp/ and1135

non-cache state going in $XDG_DATA_HOME/net.example.MyApp/. Alter-1136

natively, as suggested in the Applications Design, the latter could be /Appli-1137

cations/net.example.MyApp/Storage/username/state/. This has the advantage1138

of allowing all data for a particular app to be removed by deleting /Applica-1139

tions/net.example.MyApp, at the cost of not following the XDG standard used1140

by most existing software. This fulfils the factory reset requirement (Factory1141

reset).1142

The former is effectively equivalent to a per-(user, app) XDG_CACHE_HOME1143

directory, and the latter to a XDG_DATA_HOME, as defined by the XDG Base1144

Directory Specification46.1145

AppArmor rules should exist to allow apps to write to these directories (and1146

not to other apps’ state directories). This is the extent of the security needed,1147

as state storage is simply an interaction between an app and the filesystem.1148

This approach automatically allows for rollback of persistent data (Rollback)1149

using the normal snapshotting mechanism described in the Applications Design1150

document.1151

As with preferences, app bundles must be in charge of upgrading their own per-1152

sistent data when the system is upgraded (or the app is upgraded) (System and1153

app bundle upgrades). Recommendations are given in the subsections below.1154

Recommended serialisation APIs1155

As each app’s state storage requirements are different, we suggest that Apertis1156

provide several recommended serialisation APIs, and allow apps to choose the1157

most appropriate one — or something completely different if that fulfils their1158

requirements better.1159

Alongside, Apertis should provide guidelines to app developers to allow them1160

to choose an appropriate serialisation API, and avoid common problems in se-1161

rialisation:1162

• minimise writes to main storage (Minimising io bandwidth);1163

• ensure all updates to stored state are atomic (requirement Atomic up-1164

dates); and1165

• ensure transactions are used for groups of updates where appropriate (1166

Transactional updates).1167

46http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

34

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

Atomic in the sense that either the old or new states are stored in1168

entirety, rather than some intermediate state, if power is lost part-1169

way through an update.1170

Depending on the requirements it is believed that apps will have, some or all of1171

the following APIs could be recommended for serialising state to main storage.1172

For comparison, Android only provides a generic file storage API, and an SQLite1173

API, with no implemented key–value store APIs47. Apps must implement those1174

themselves.1175

GKeyFile1176

https://developer.gnome.org/glib/stable/glib-Key-value-file-parser.html1177

Suitable for small amounts of key–value state with simple types. Suitable for1178

small amounts of data.1179

All updates to a GKeyFile are atomic, as it uses the atomic-overwrite technique:1180

the new file contents are written to a temporary file, which is then atomically1181

renamed over the top of the old file. Transactional updates can be implemented1182

by saving the key file to apply the transaction, and discarding the in-memory1183

GKeyFile object to revert it.1184

The amount of I/O with a GKeyFile is small, as the amount of data which1185

should be stored in a GKeyFile is small, and the file is only written out when1186

explicitly requested by the app.1187

System upgrades have to be handled manually by app bundles — if the persis-1188

tence data format has to change, the app must migrate data from the old format1189

to the new format the first time it is run after an upgrade. In this case, it is1190

recommended that all GKeyFiles used for persistent data contain a ‘Version’1191

key specifying the data format version in use.1192

GVDB1193

https://git.gnome.org/browse/gvdb1194

Memory-mapped hash table with GVariant48-style types, suitable for small to1195

large amounts of data which are read much more frequently than they are writ-1196

ten. This is what dconf uses for storage.1197

All updates to a GVDB file are atomic, as it uses the same atomic-overwrite1198

technique as GKeyFile. Transactions are supported similarly — by writing out1199

the updated database or discarding it.1200

The amount of I/O for reads from a GVDB file is small, as it memory-maps1201

the database, so only pages in the data it actually reads (plus some metadata).1202

47http://developer.android.com/guide/topics/data/data-storage.html
48https://developer.gnome.org/glib/stable/glib-GVariant.html

35

http://developer.android.com/guide/topics/data/data-storage.html
https://developer.gnome.org/glib/stable/glib-Key-value-file-parser.html
https://git.gnome.org/browse/gvdb
https://developer.gnome.org/glib/stable/glib-GVariant.html
http://developer.android.com/guide/topics/data/data-storage.html
https://developer.gnome.org/glib/stable/glib-GVariant.html

Writes require the entire file to be updated, but are only done when explicitly1203

requested by the app.1204

GVDB supports per-file versioning (though this is not currently exposed in1205

the public API). This can be used for handling system upgrades (System and1206

app bundle upgrades) — the database must be explicitly migrated from an old1207

version to a new version when an upgraded app is first started.1208

SQLite1209

http://sqlite.org/1210

https://wiki.gnome.org/Projects/Gom1211

Full SQL database implementation, supporting simple SQL types and more1212

complex relational types if implemented manually by the app. Suitable for1213

medium to large amounts of data which are read and written frequently. It1214

supports SQL transactions.1215

SQLite is not a panacea. It is designed for the specific use pattern of SQL1216

databases with indexes and relational tables, with frequent reads and writes,1217

and infrequent deletions of data. Apps will only get the best performance from1218

SQLite by defining their own table structure, indices and relations; imposing a1219

common key–value-style API on top of SQLite would give lower performance.1220

SQLite has limited support for SQL schema upgrades with its ALTER TABLE491221

statement, which supports renaming tables and adding new columns to tables.1222

Apps must implement their own data migration from old to new versions of1223

their database schema; documenting this is beyond the scope of this design.1224

Apps should only use SQLite if they have considered issues like their vacuuming1225

policy — how frequently to vacuum the database after deleting data from it.1226

See:1227

• https://blogs.gnome.org/jnelson/2015/01/06/sqlite-vacuum-and-auto_vacuum/1228

• https://wiki.mozilla.org/Performance/Avoid_SQLite_In_Your_Next_Firefox_Feature1229

If using GObjects to represent entries in an SQLite database, the GOM50 wrap-1230

per around SQLite may be useful to simplify code.1231

GNOME-DB1232

http://www.gnome-db.org/1233

This is not recommended. It is an abstraction layer over multiple SQL database1234

implementations, allowing apps to access remote SQL databases. In almost all1235

cases, directly using Sqlite is a more appropriate choice.1236

49https://www.sqlite.org/lang_altertable.html
50https://wiki.gnome.org/Projects/Gom

36

http://sqlite.org/
https://wiki.gnome.org/Projects/Gom
https://www.sqlite.org/lang_altertable.html
https://blogs.gnome.org/jnelson/2015/01/06/sqlite-vacuum-and-auto_vacuum/
https://wiki.mozilla.org/Performance/Avoid_SQLite_In_Your_Next_Firefox_Feature
https://wiki.gnome.org/Projects/Gom
http://www.gnome-db.org/
https://www.sqlite.org/lang_altertable.html
https://wiki.gnome.org/Projects/Gom

When to save persistent data1237

As specified in the Applications Design (section 5.3.1), state is saved to main1238

storage at times chosen by both the operating system and the app. The oper-1239

ating system knows when the logged in user is about to change, or when the1240

system is about to be shut down; the app knows when it has changed some of1241

its persistent state in memory, and hence needs to write it out to main storage.1242

An action could be implemented in each app which is triggered by the Acti-1243

vateAction method of the org.freedesktop.Application D-Bus interface51 if, for1244

example, that interface is implemented by apps. When triggered, this action1245

would cause the app to store its persistent state.1246

Recently used and favourite items1247

Section 6.3 of the Global Search Design specifies that an API for apps to store1248

their favourite and recently used items in will be provided. As this is data shared1249

from an app to the operating system, and is typically append-only rather than1250

strongly read–write, we recommend that it be designed separately from the1251

persistent data API covered in this document, following the recommendations1252

given in the Global Search Design document.1253

Summary of recommendations1254

As discussed in the above sections, we recommend:1255

• Splitting preferences, persistent data storage and confidential data storage1256

(Approach).1257

• Providing one API for preferences: GSettings (Overall architecture).1258

• Apps provide a GSettings schema file for their preferences, named after1259

the app (Overall architecture).1260

• Existing GSettings schemas are re-used where possible for user and system1261

settings (Existing preferences schemas).1262

• Using the normal GSettings approach for handling app upgrades (Overall1263

architecture).1264

• Developing against the normal dconf backend for GSettings (section De-1265

velopment backend.1266

• Switching to the proxied dconf backend once it’s ready, to support access1267

control (Proxied dconf backend).1268

• A key-file backend is an alternative we do not recommend (Key-file back-1269

end).1270

51http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#
dbus

37

http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#dbus
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#dbus
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#dbus

• Permissions to modify user or system settings are controlled by the app’s1271

manifest (Security policy).1272

• Permissions are converted to backend-specific AppArmor rules by the app1273

store (Security policy).1274

• User interfaces for preferences are provided by the vendor, automatically1275

generated from GSettings schemas; or provided by applications (User1276

interface).1277

• Apertis provides a standard widget to present GSettings schemas as a1278

preferences UI (Preferences list widget).1279

• Preferences hard key support is added according to the Hard Keys design1280

preferences hard key).1281

• Providing API to get a persistent data storage location (Well known state1282

directories).1283

• Persistent data is private to each (user, app) pair (Well known state1284

directories).1285

• Recommending various different data storage APIs to suit different apps’1286

use cases (Recommended serialisation APIs).1287

• Apps explicitly define which data will persist, and are responsible for sav-1288

ing it and migrating it from older to newer versions (Overall architecture).1289

• Apps can be instructed to save their persistent state by the operating1290

system via a D-Bus interface (When to save persistent data).1291

• User secrets and passwords are stored using the freedesktop.org Secrets1292

D-Bus API, not the Apertis preferences or persistence APIs (Approach).1293

38

	Introduction
	Terminology and concepts
	System Settings
	User settings
	App settings
	Preferences
	User services
	Persistent data
	Main storage
	GSettings
	AppArmor

	Requirements
	Access permissions
	Writability
	Rollback
	System and app bundle upgrades
	Factory reset
	Abstraction level
	Minimising I/O bandwidth
	Atomic updates
	Transactional updates
	Performance tradeoffs
	Data size tradeoffs
	Concurrency control
	Vendor overrides
	Vendor lockdown
	User interface
	Control over user interface
	Rearrangeable preferences
	Searchable preferences
	Storage of user secrets and passwords
	Preferences hard key

	Existing preferences systems
	GNOME Linux desktop
	Preferences
	Persistent data
	Secrets and passwords

	Android
	Preferences
	Persistent data
	Secrets and passwords

	iOS
	Preferences
	Persistent data
	Secrets and passwords

	GENIVI
	Preferences and persistent data
	Secrets and passwords

	Approach
	Preferences approach
	Overall architecture
	Requirements

	Proxied dconf backend
	Requirements

	Development backend
	Requirements

	Key-file backend
	Requirements

	Security policy
	User interface
	System preferences application
	Per-application preferences windows
	Generating a preferences window from a GSettings schema file
	Support for custom preferences windows
	Searchability of preferences
	Reorganising preferences
	Preferences list widget
	Vendor lockdown
	Discussion of automatically generated versus manually coded preferences UIs

	Preferences hard key
	Existing preferences schemas

	Persistent data approach
	Overall architecture
	Well-known state directories
	Recommended serialisation APIs
	GKeyFile
	GVDB
	SQLite
	GNOME-DB

	When to save persistent data
	Recently used and favourite items

	Summary of recommendations

