
Supported API

Contents1

New releases and API stability 22

API and ABI stability strategies 33

The Android approach . 34

The iOS approach . 45

The Apertis/OpenSource approach . 46

The role of limiting the supported API surface 67

How would incompatible changes impact the product and how to han-8

dle them? . 69

The GTK+ upgrade and a Clutter API break 610

When a core library breaks . 711

When a “leaf” library breaks ABI 812

ABI is not just library symbols 813

The move to Wayland . 914

The GTK+ and Clutter merger 915

API Support levels 916

Custom APIs . 1017

Enabling APIs . 1118

OS APIs . 1219

Internal APIs . 1220

External APIs . 1221

Differing stability levels . 1322

Maintaining API stability . 1423

Components 1424

Conclusion 1525

The goal of this document is to explain the relevant issues around API (Applica-26

tion Programming Interface) and ABI (Application Binary Interface) stability27

and to make explicit the APIs and ABIs that can be and will be guaranteed to28

be available in the platform for application development.29

It will be explained as well how we are going to deal with situations where30

certain components break their API/ABI.31

New releases and API stability32

Software systems are typically composed of several components with some de-33

pending on others. Components need to make assumptions about how their34

dependencies behave, in order to use them. These assumptions are categorized35

in API and ABI depending on whether they are resolved at build time or at run-36

time, respectively. As components evolve over time and their behavior changes,37

so may their API and ABI.38

2

In systems composed of thousands of components, each time a component39

changes, potentially hundreds of other components could break. Fixing each40

of those components could cause other breaks in turn. Without a way to man-41

age those changes, assembling and maintaining non-trivial systems wouldn’t be42

a practical enterprise.43

To manage this complexity, components which are to be depended upon by44

others set an API/ABI stability policy. This policy states under which cir-45

cumstances new releases can be expected to break API or ABI. This allows46

the system integrator to update to newer releases of components with some as-47

surance that other components won’t break as a result. These guarantees also48

allow new releases of components to simply depend upon the last “known-good”49

release of each of their dependencies instead of requiring them to be constantly50

tested against newer dependencies.51

Most components will keep stable branches in which API - and often ABI -52

are not allowed to break, and normally only bug fixes and minor features will53

be merged into these branches. It is generally recommended that components54

(particularly, stable ones) depend only on stable branches of their dependencies.55

Releases in a stable branch are referred to as “backwards compatible” because56

components that depend upon a given release will continue to work with later57

releases in that same branch.58

By libraries keeping API stability in stable branches and by libraries and appli-59

cations depending on stable versions of libraries, breaks are greatly reduced to60

manageable levels.61

An API can consist of multiple parts: for a typical C library, the API will62

be the C function and type declarations, plus the gobject-introspection (GIR)63

description of the API. Similarly, an ABI can consist of multiple parts: the C64

function and type declarations, plus the D-Bus API for a system service, for65

example.66

The GIR API is especially relevant for further development of Apertis, as it is67

planned to allow apps to be written in non-C languages such as JavaScript. In68

this situation, API stability requires both the C declarations to be stable, plus69

the conversion of those declarations to a GIR file to be stable — so it is affected70

by changes in the implementation of the GIR scanner (the g-ir-scanner utility71

provided by gobject-introspection). This is covered further in ABI is not just72

library symbols.73

API and ABI stability strategies74

There is a tension between keeping the development environment stable and75

keeping up with novelties. Following is an investigation about how various mo-76

bile platforms have tackled this issue that hopefully provides enough information77

for a practical strategic decision on how to handle that tension.78

3

The Android approach79

Android makes a promise of forward-compatibility for the main Android APIs.80

Although Android has been built on top of Linux and using a Java virtual81

machine, no APIs of these platforms are considered to be part of the Android82

platform.83

Instead of reusing existing components and libraries Google decided to write84

almost everything from scratch, including a C library, a graphics subsystem,85

audio, web and multimedia subsystems and APIs.86

This approach has the big disadvantage of not reusing and sharing much of the87

work done by the open source community in similar projects, which means a88

significant investment and hundreds of thousands of hours of engineering time89

spent building and maintaining everything. On the plus side, those APIs and90

the underlying components they are built upon are fully controlled by Google,91

and submit to whatever requirements the Android platform has, giving Google92

full control regarding tilting the balance in favour of stability or break-through93

as it sees fit.94

Although Google has been very successful in keeping its API/ABI stability95

promises, it has made incompatible changes in almost every release. From API96

level 13 to 14 (in other words, from Android 3.2 to 4.0) alone there were a few97

dozen API deprecations and removals1, including methods, class and interface98

fields, and so on. Each new version brings in its release notes a report of API99

differences compared to the last version. In addition to these, underlying compo-100

nent changes have caused applications to misbehave and crash when assuming101

a certain behaviour that got changed.102

The iOS approach103

Apple has been known for wanting to control every bit of the products they104

make. From hardware all the way to third-party application design, Apple tends105

to influence or enforce its own rules. The iOS is no exception: instead of reusing106

existing open source APIs, Apple designed and built their own components and107

APIs from the ground up. The same disadvantages Android’s approach has are108

also present here: instead of sharing the cost of building all of the basic tools109

with lots of developers world wide, Apple decided to build everything itself,110

making a significant investment in terms of money and engineering time.111

The main difference between Android and iOS, though, are that Apple did not112

have to start from scratch: they had Mac OS X already, and were able to113

reuse some of the work they have done previously, although that itself brings114

a disadvantage: the need to balance the needs of the desktop use case and115

the mobile use case in a single code base. The advantages, though, are the116

same: Apple is fully in control of the system from the ground up, and can make117

decisions on tilting the balance between stability and break-through.118

1http://developer.android.com/sdk/api_diff/14/changes/alldiffs_index_removals.html

4

http://developer.android.com/sdk/api_diff/14/changes/alldiffs_index_removals.html
http://developer.android.com/sdk/api_diff/14/changes/alldiffs_index_removals.html

Apple, like Google, has also been successful keeping compatibility, but has had119

its set of incompatible changes in every release. The API changes between iOS120

4.3 to 52, for instance, has a couple tens of removed or renamed classes, fields121

and methods.122

The Apertis/OpenSource approach123

Open source projects like GNOME have been very successful at providing bal-124

ance to the tension by having API/ABI stability promises, but as the need125

for technology overhauls appeared, keeping backwards compatibility has often126

proven very costly, and a choice to break compatibility and refresh the platform127

has been made.128

That was the case, for instance, with the release of GNOME3. The GNOME129

project had to some extent maintained compatibility with applications that were130

written all the way back in 2002, and had accumulated a considerable amount131

of deprecated functionality and APIs that burdened the project, slowing down132

progress and requiring a lot of maintenance work. Those had to be left behind133

the project in order to bring it up-to-date with the expectations of the current134

decade.135

The big advantage of using open source components is most of the hard work of136

building all of the pieces of infrastructure and even some applications has been137

made, leaving hardware integration, application development, customization,138

specific features and QA as the main required work before going to market,139

instead of having a much larger team that would build everything from scratch,140

or licensing a proprietary components.141

The main disadvantage to this approach is that the decision on how to tilt142

the balance between stability and freshness is not under the full control of the143

company building the product: some decisions will be made by the projects that144

build the various components that make up the solution that can increase the145

cost of keeping stability while still maintaining freshness.146

For instance: Google has full control of Android’s underlying graphics stack,147

Surface Flinger, and is able to ensure its compatibility moving forward; it is148

also able to make APIs deal transparently with changes in this underlying layer.149

The same goes for Apple and its iOS. When it comes to the open source graph-150

ics stack, a move from the current Xorg infrastructure to the next-generation151

Wayland will break some of the underlying assumptions made by applications.152

Some of the core libraries that are parts of the graphics stack are also likely to153

change, taking advantage of the API stability break imposed by the move to154

a new graphics infrastructure to also perform some changes to their core and155

APIs. Some projects may also decide to break their stability promises from time156

to time for technology overhauls, like GNOME did with GNOME 3. We will157

2https://developer.apple.com/library/ios/#releasenotes/General/iOS50APIDiff/index.
html

5

https://developer.apple.com/library/ios/#releasenotes/General/iOS50APIDiff/index.html
https://developer.apple.com/library/ios/#releasenotes/General/iOS50APIDiff/index.html
https://developer.apple.com/library/ios/#releasenotes/General/iOS50APIDiff/index.html
https://developer.apple.com/library/ios/#releasenotes/General/iOS50APIDiff/index.html
https://developer.apple.com/library/ios/#releasenotes/General/iOS50APIDiff/index.html

investigate some theoretical and real world cases in order to get a more concrete158

example of how these overhauls may present themselves, and how they can be159

handled.160

There are several options when dealing with backwards-incompatible novelties:161

delaying the integration of a new release, for instance, is the best way to guar-162

antee stability, but that will only delay the impact of the changes. Building a163

set of APIs that abstract some of the platform can also be sensible: applications164

using high level widgets can be shielded from changes done at the lower levels165

– Clutter, Mx, and so on.166

To conclude: taking advantage of open source code takes away some of the167

control over the platform’s future. While Google and Apple are able to decide168

exactly what happens to the components that make up Android and iOS in the169

future, someone basing their product on an open source platform doesn’t. It’s170

important to notice that that is also the case for companies building products171

based on Android, and maybe even more so: when Google decided that Android172

Honeycomb would not be released, many companies were left without the latest173

version of Android to base their products on.174

Also, like GNOME, Windows and Mac OS have started afresh at some point in175

time, to be able to bring their products to the next level, it is very likely there176

will come a time in which iOS and Android will go through a similar major177

change on their foundations, and companies basing their products on Android178

will have to decide how to handle the upgrade, when it happens.179

The role of limiting the supported API surface180

While the API and ABI promises made by Android and iOS have been largely181

successful, it is important to note that they do not cover everything an appli-182

cation may need. Core services like graphics and networking are covered, but183

more specific functionality is not. One example is JSON processing. JSON184

is one of the most widely used formats for exchanging data between apps and185

servers.186

There are no APIs at all for this format in iOS. Applications that need to use187

JSON need to either roll their own implementation or embed a JSON processing188

library into their application. The same goes for APIs to access Youtube and189

other Google services through its GData protocol.190

See < http://www.appdevmag.com/10-ios-libraries-to-make-191

your-life-easier/%3E3 for more examples of missing APIs and192

replacements that can be embedded193

Android has similar limitations. Android devices are not guaranteed to have194

APIs for Google services, and although add-ons exist to bolt on those APIs,195

they cannot be redistributed, in some cases. For services that use GData, there196

3http://www.appdevmag.com/10-ios-libraries-to-make-your-life-easier/%3E

6

http://www.appdevmag.com/10-ios-libraries-to-make-your-life-easier/%3E
http://www.appdevmag.com/10-ios-libraries-to-make-your-life-easier/%3E
http://www.appdevmag.com/10-ios-libraries-to-make-your-life-easier/%3E
http://www.appdevmag.com/10-ios-libraries-to-make-your-life-easier/%3E

is also an add-on library that can be embedded in the application, but there are197

no API/ABI guarantees.198

Imposing those limits on which APIs are guaranteed to not change (or change199

as little as possible in reality) makes it possible for Android and iOS to lower200

the maintenance costs for the platform, while making it possible to embed li-201

braries into applications allows applications to not be completely limited by the202

available standard APIs. Note also that embedded libraries can only be used203

by the application embedding it, avoiding inter-application dependencies. That204

is one of the reasons Collabora is suggesting that a set of libraries be specified205

to be handled as supported.206

How would incompatible changes impact the product and207

how to handle them?208

This section aims at investigating some cases where a line was drawn and old209

APIs were left behind, and how products based on or simply shipping those210

APIs handled it. The arrival of GNOME 3 in early 2011 drew the line and211

allowed for the clean up of APIs that were almost 10 years old, with few or212

no forward compatibility breakages through that period. It provides a lot of213

insights at how to handle that kind of structural overhaul.214

The GTK+ upgrade and a Clutter API break215

GTK+ is the main toolkit used by the GNOME system. The upgrade to GTK+216

3.0 was very smooth, for such a big upgrade. Applications required changes,217

but not all applications needed to be ported at once, since everything that made218

up the library changed name, making it installable in parallel with GTK+ 2.219

This means simple applications written using the toolkit still work, even if you220

have GTK+ 3-based applications installed and working. So that is exactly how221

distributors handled the situation: both libraries are installed as long as there222

are applications that need the old one.223

A very similar situation would surface if Clutter and Mx happened to break their224

API and ABI promises: applications that aren’t updated to use the new APIs225

and ABIs would simply continue using the older Clutter and Mx libraries. An226

additional burden would appear for the teams designing higher level widgets,227

though: the widgets would have to be supported for both library versions,228

and care would need to be taken to not have an application link to the old229

Clutter/Mx and with the higher level widgets built with the new ones.230

There are several facilities to make this possible available in the debian pack-231

aging tools used by the base distribution Apertis is built on, and also in the232

development tools used by those libraries. Provided they are used correctly this233

specific case should not prove too difficult. Most distributions that handled this234

kind of breakage spent a lot of time tuning dependencies and other package235

relationships, and making sure no interfaces other than the binary ones were in236

7

disagreement, though. Some of the Collabora developers who are participating237

in the Apertis project are responsible for a significant part of the work that has238

been done to make the transition smooth in Debian. Their experience with it is239

that it is a very time consuming process, with many corner cases and subtleties240

to be taken care of, and even then several trade-offs had to be made.241

When a core library breaks242

Some applications are a bit special: most browser plugins, for instance, relied243

on the browser being written in GTK+ 2 – since that is what Firefox uses on244

Linux/X11. That is not a problem for a browser built in Qt, or Clutter, for245

instance, since they can look for the system GTK+ 2 library, open it and use246

its symbols to perform the initialization some plugins expect. It is a problem,247

though, for browsers written in GTK+ 3: as soon as the plugin is loaded there248

will be symbols from both GTK+ 3 and GTK+ 2 in the symbol resolution table,249

and that will lead to subtle and hard to debug bugs, and to crashes. That is250

one of the reasons why Firefox has decided to not move to GTK+ 3.251

The same happens with GStreamer plugins. If a library is used by both a252

GStreamer plugin and an application, and that library changes the same prob-253

lem described for browser plugins would happen. That would be the case if, for254

instance, an application uses clutter-gst – since the application and the clutter-255

gst video sink both link to Clutter, they would need to be linked to the same256

version of the library to work properly.257

Plugins are not the only case in which such problems happen. If a core library258

like glib breaks compatibility similar issues will appear for all of the platform.259

Almost every application links to glib and so do many libraries, including core260

ones like Clutter. If a new version of glib is released which breaks ABI, all of261

these would have to be migrated to the new library at once, otherwise symbol262

clashes like the ones described above would happen. In GNOME 3 glib has263

not broken compatibility, but it is expected to break it at some point in the264

(medium term) future.265

As discussed in the previous section, ensuring forward compatibility after such a266

break in the ABI of glib would only be possible with a very significant effort, and267

might prove to not be viable. Collabora would recommend that turning points268

like this be treated as major upgrades to the platform, requiring applications to269

be reworked. Such upgrades can be delayed by a few releases to allow enough270

time for the applications to be updated, though.271

When a “leaf” library breaks ABI272

When a core library such as glib breaks, the impact will be felt throughout the273

platform, but when a library that is used only by a few components breaks there274

is more room for adjustment. It’s unlikely that both libraries and applications275

would link to libstartup-notification, for instance. In such cases the new version276

8

of the library can be shipped along with the old one, and the old one can be277

maintained for as long as necessary.278

ABI is not just library symbols279

A leaf library may end up causing more issues, though, if it breaks. GNOME280

3 has provided us with an example of that: the GNOME keyring is GNOME’s281

password storage. It’s made up of a daemon (that among other things provides282

a D-Bus service), and a client library for applications to use. GNOME keyring283

has undergone a change in the protocol, and both the library and the daemon284

were updated. The library was parallel installable with the old one, but the new285

daemon completely replaced the old one.286

But the old client library and the new daemon did not know how to talk to each287

other, so even though applications would not crash because of a missing library288

or missing symbols, they were not able to store or obtain passwords from the289

keyring. That is also what would happen in case a D-Bus service changes its290

interface.291

In case something like this happens it is possible to work around the issue by292

adding code to the daemon to keep supporting the old protocol/interface, but293

this increases the maintenance burden and the cost/benefits ratio needs to be294

properly assessed, since it may be significant.295

Similarly, the GIR interface for a library forms part of its public API. The GIR296

interface is a high-level, language-agnostic API which maps directly to the C297

API, and can be used by multiple language bindings to automatically allow the298

library to be used from those languages. Its stability depends on the stability of299

the underlying C library, plus the stability of the GIR generation, implemented300

by g-ir-scanner.301

The move to Wayland302

Moving to Wayland is a fairly big change, but the impact on application com-303

patibility may not be that big. If applications are using only standard Clutter304

and Mx APIs (or higher level APIs built on top of them) they would just work.305

If the application relies on something related to X, though, and uses any of the306

Clutter X11 functions, then that will require that they be ported.307

That is a good reason for making those APIs part of the unsupported set, and308

if necessary provide APIs as part of the higher level toolkit to accommodate309

application needs. Wayland will allow an X server to be run and paint to one310

of its windows, so extreme cases could be handled by using that feature, but311

relying on it may prove unwise.312

The GTK+ and Clutter merger313

There has been discussion among GNOME developers recently about merging314

Clutter and GTK+ into a single toolkit. GTK+ is a powerful toolkit with many315

9

years of experience built in, and solving many of the problems posed by complex316

UIs, but it lacks the eye candy and some of the features people now expect in a317

modern toolkit. Clutter on the other hand has all of the eye candy and features318

one expects from a modern toolkit, but lacks the toolkit part. While Mx and St,319

the GNOME Shell’s toolkit, do provide some widgets and higher level features,320

they are not nearly as fully featured and mature as GTK+. The existence of321

so many toolkits is being seen as fragmentation of the developer story in the322

GNOME platform, which also plays a role in these discussions.323

When the merger of Clutter and GTK+ happens , the impact and solutions324

would be pretty much the same as if Clutter and Mx break ABI. Old libraries325

and applications using Clutter and Mx would remain working, but care would326

have to be exercised in making sure no process ends up using the two versions at327

the same time. It would also lead the project to making a decision on whether328

to rebase the higher level widgets on the new GTK+ 4 (as the merged library329

is called in discussions) or not.330

According to the maintainers, Mx is still in use by Intel in some of their appli-331

cations and will be used for the netbook UI in Tizen, so its medium-term future332

appears to be fairly certain at this point.333

API Support levels334

A number of API support levels has been indicated recognizing that some bits335

of the platform are more prone to change than others, and given the strategy336

of building higher level custom APIs. The custom and enabling APIs make up337

what is often called the SDK APIs. They are the ones with better promises,338

and for which Collabora will try to provide smooth upgrade paths when changes339

come about, while the APIs on the lower levels will not get as much work, and340

application developers will be made aware that using them means the app might341

need to be updated for a platform upgrade.342

The overall strategy being considered right now to assign APIs to each of these343

support levels is to start with the minimum set of libraries required to run the344

Apertis system being part of the image with all libraries assigned to the Internal345

APIs support level, and gradually promote them as development progresses and346

decisions are made. The following sections describe the support levels.347

10

348

Custom APIs349

The Custom APIs are high level APIs built on top of the middleware provided by350

Collabora. These APIs do not expose objects, types or data from the underlying351

libraries, thus providing easier and abstract ways of working with the system.352

Examples of such APIs are the share functionality, and a number of UI com-353

ponents that have been designed and built for the platform. Collabora has354

had only limited information about these components, so an assessment of how355

effectively they shield store applications from lower support level libraries is356

currently not possible.357

For these components to deliver on their promise of abstracting the lower level358

APIs it is imperative that they expose no objects, data types, functions and so359

on from other libraries to the application developer. Collabora will be ready360

to assist on defining and refining the Custom APIs to cover basic needs for361

applications.362

Enabling APIs363

These APIs are not guaranteed to be stable between platform upgrades, but364

work may be done on a case-by-case basis to provide a smooth migration path,365

with old versions coexisting with newer ones when possible. Most existing open366

source APIs related to core functionality fall in this support level: Mx, clutter,367

clutter-gst, GStreamer, and so on.368

As discussed in section 3.5.1, The GTK upgrade and a Clutter API break,369

there are ways to deal with ABI/API breakage in these libraries. Keeping both370

11

versions installed for a while is one of them. In the short term there will be at371

least one set of API changes that will have a big impact on the Apertis project:372

Clutter 2.04. That new version of clutter is one of the steps in preparation for373

a future merge of GTK+ and Clutter.374

It is possible that this new version of Clutter is released while the Apertis project375

is still not far enough in development that a switch can be made. However, in376

case that is not possible, a plan will need to be laid out to properly migrate377

to this new version in a future release. Being based on Clutter, the main SDK378

APIs that relate to UI will need to be ported, of course. Components that are379

based on Clutter such as clutter-gst will need to be updated too. Illustration380

Illustration shows how an application process could end up in this situation.381

This would lead to the kind of problems discussed in When a core library breaks382

for applications that use clutter both directly and indirectly through another383

library that uses clutter under the hood, for instance. An application that uses384

both SDK UI APIs and an earlier version of clutter would have to be updated.385

An application which relies solely on Clutter would still work fine by just having386

the old version of clutter around. The same would apply to an application which387

relies solely on the SDK UI APIs, of course.388

389

OS APIs390

The OS APIs include low level libraries such as glib and its siblings gio, gdbus,391

as well as system services such as PulseAudio, glibc and the kernel. Applications392

reaching down to these components would, as is the case for enabling APIs, not393

necessarily work without changes after a platform upgrade.394

4http://wiki.clutter-project.org/wiki/ClutterChanges:2.0

12

http://wiki.clutter-project.org/wiki/ClutterChanges:2.0
http://wiki.clutter-project.org/wiki/ClutterChanges:2.0

Internal APIs395

These are APIs used to build the Apertis system itself but not exposed to store396

applications. A library might get assigned to this support level if it is required397

to implement system features, but its API is too unstable to expose to from-398

store applications. Some libraries that fit this support level might also be in the399

External APIs one.400

External APIs401

Some libraries are not core enough that they warrant being shipped along with402

the main system or are not very stable API-wise. One such example is poppler,403

which changes API and ABI fairly often and is not really required for most404

applications – it will certainly be used on the main PDF viewing application,405

and most other applications will simply yield to the system viewer when faced406

with a PDF file.407

That means poppler is a good candidate for bundling with the applications that408

need it instead of being part of the core supported APIs.409

Differing stability levels410

While the Enabling, Custom, External, Internal and OS categories separate411

APIs based on the level of control and direct involvement we have over them,412

a separate dimension is needed to track the stability of APIs, with four levels:413

private, unstable, stable, and deprecated. An API starts as private, and can414

transition to any of the other levels. Transitions between stable and deprecated415

are possible, but an API can never change or go back to being unstable or416

private once it is stable — this is one of the stability guarantees.417

It may be possible to move a library from the unstable level to the stable level418

piecewise, for example by initially exposing a limited set of core functions as419

stable, while marking the rest of the API as ‘currently unstable’. Old API could420

later be marked as deprecated. Further, it may be desirable to expose the same421

API at different levels for different languages. For example, a library might be422

stable for the C language, but unstable when used from JavaScript, pending423

further testing and documentation work to mark it as stable.424

This approach allows a phased introduction of stable APIs, giving sufficient425

time for them to be thoroughly reviewed and tested before committing to their426

stability.427

This could be implemented in the GIR files for an API, with annotations ex-428

tracted from the gtk-doc comments of the API’s C source code — gtk-doc429

currently supports a ‘Stability’ annotation. As an XML format, GIR is exten-430

sible, and custom attributes could be used to annotate each function and type431

in an API with its stability, extracted from the gtk-doc comments. Separate432

documentation manuals could then be generated for the different stability lev-433

13

els, by making small modifications to the documentation generation utilities in434

gtk-doc.435

Restricting less stable or deprecated parts of an API from being used by an436

app written in C is technically complex, and would likely involve compiling two437

versions of each library. It is suggested that less stable functions and types are438

always exposed, with the understanding that app developers use them at their439

own risk of having to keep up with API-incompatible changes between Apertis440

versions. Their existence would not be obvious, as they would not be included441

in the documentation for the stable API.442

By contrast, restricting the use of such APIs from high-level languages is simpler:443

as all language bindings use GIR, only the GIR files and the infrastructure444

which handles them needs modifying to support varying the visibility of APIs445

according to their stability level. The bindings infrastructure already supports446

‘skipping’ specific APIs, but this is not currently hooked up to their advertised447

stability. A small amount of work would be needed to enable that.448

Maintaining API stability449

It is easy to accidentally break API or ABI stability between releases of a library,450

and once a release has been made with an API break, that break cannot be451

undone.452

The Debian project has some tooling to detect API and ABI changes between453

releases of a library, though this is invoked at packaging time, which is after the454

library has been officially released and hence after the damage is done.455

This tooling could be leveraged to perform the ABI checks before making a456

library release.457

While such tools exist for C APIs, no equivalents exist for GIR and D-Bus458

APIs; the stability of these must currently be checked manually for each release.459

As both APIs are described using XML formats, developing tools for checking460

stability of such APIs would not be difficult, and may be a prudent investment.461

Components462

To illustrate how the platform APIs relate to Apertis-specific APIs, we are463

reproducing here a diagram taken from the Apertis SDK documentation. The464

components listed in the table below belong to the orange and green boxes:465

14

466

The following table has a list of libraries that are likely to be on Apertis images467

or fit into one of the supported levels discussed before. The table has links468

to documentation and comments on API/ABI stability promises made by each469

project for reference. As discussed before, fitting components into one of the470

supported levels will be an iterative process throughout development, so this471

table should not be seen as a canonical list of supported APIs.472

Name Version API reference Notes API/ABI Stability Guarantees
GLibc 2.14 http://www.gnu.org/software/libc/manual/html_node/index.html Ubuntu uses EGLIBC Aims to provide backwards compatibility
OpenGL ES 2.0 http://www.khronos.org/opengles/sdk/docs/man/ Provided by Freescale The standard is stable and the implementation should be as well
EGL 1.4 http://www.khronos.org/registry/egl/specs/eglspec.1.4.20110406.pdf Provided by Freescale The standard is stable and the implementation should be as well
GLib 2.32 http://developer.gnome.org/glib/2.31/ Gnome Platform API/ABI Rules
Cairo 1.10 http://cairographics.org/documentation/ Tutorial, Example code Stability guaranteed in stable series
Pango 1.29 http://developer.gnome.org/pango/stable/ Gnome Platform API/ABI Rules
Cogl 1.10 http://docs.clutter-project.org/docs/cogl/unstable/ Latest documentation currently; Gnome Platform API/ABI Rules
Clutter 1.10 http://docs.clutter-project.org/docs/clutter/unstable/ Latest documentation currently; Gnome Platform API/ABI Rules
Mx 1.4 http://docs.clutter-project.org/docs/mx/stable/ See warning below Stability guaranteed in stable series
GStreamer 1.0 http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html/ Development manual, Plugin writer’s guide Stability guaranteed in stable series
Clutter-GStreamer 1.6 http://docs.clutter-project.org/docs/clutter-gst/stable/ Stability guaranteed in stable series
GeoClue 0.12 http://www.freedesktop.org/wiki/Software/GeoClue No guarantees
LibXML2 2.7 http://xmlsoft.org/html/index.html Tutorial (includes some example code) Gnome Platform API/ABI Rules
libsoup 2.4 http://developer.gnome.org/libsoup/unstable/ Stability guaranteed in stable series
librest 0.7 http://developer.gnome.org/librest/unstable/ Stability guaranteed in stable series
libchamplain 0.14.x http://developer.gnome.org/libchamplain/unstable/ Follows Clutter version numbering and API/ABI stability plan
Mutter 3.3 Inlined documentation No ABI compatibility guarantees. Still need to find about the API
ConnMan 0.78 http://git.kernel.org/?p=network/connman/connman.git;a=tree;f=doc;hb=HEAD No guarantees

15

http://www.gnu.org/software/libc/manual/html_node/index.html
http://www.khronos.org/opengles/sdk/docs/man/
http://www.khronos.org/registry/egl/specs/eglspec.1.4.20110406.pdf
http://developer.gnome.org/glib/2.31/
http://cairographics.org/documentation/
http://developer.gnome.org/pango/stable/
http://docs.clutter-project.org/docs/cogl/unstable/
http://docs.clutter-project.org/docs/clutter/unstable/
http://docs.clutter-project.org/docs/mx/stable/
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html/
http://docs.clutter-project.org/docs/clutter-gst/stable/
http://www.freedesktop.org/wiki/Software/GeoClue
http://xmlsoft.org/html/index.html
http://developer.gnome.org/libsoup/unstable/
http://developer.gnome.org/librest/unstable/
http://developer.gnome.org/libchamplain/unstable/
http://git.kernel.org/?p=network/connman/connman.git;a=tree;f=doc;hb=HEAD

Name Version API reference Notes API/ABI Stability Guarantees
Telepathy-GLib 0.18 http://telepathy.freedesktop.org/doc/telepathy-glib/ Stability guaranteed in stable series
Telepathy-Logger 0.2 http://telepathy.freedesktop.org/doc/telepathy-glib/ Stability guaranteed in stable series
Folks 0.6 http://telepathy.freedesktop.org/doc/folks/c/ Stable in the stable series for a fixed set of gobject-introspection and Vala releases
PulseAudio 1.1 http://freedesktop.org/software/pulseaudio/doxygen/ http://pulseaudio.org/wiki/WritingVolumeControlUIs The API/ABI hasn’t been broken in years, but might break at some point for cleaning up
Bluez 4.98 http://git.kernel.org/?p=bluetooth/bluez.git;a=tree;f=doc Stability guaranteed in stable series
libstartup-notification 0.12 See Notes Inlined documentation No guarantees
libecal 3.3 http://developer.gnome.org/libecal/3.3/ Stability guaranteed in stable series
SyncEvolution 1.2 http://api.syncevolution.org/ No guarantees
GUPnP 0.18 http://gupnp.org/docs No guarantees
libGData 0.11 http://developer.gnome.org/gdata/unstable/ Stability guaranteed in stable series
Poppler 0.18 There is minimal inline API documentation No guarantees
libsocialweb 0.26 GLib-based API has no documentation No guarantees
Grilo 0.1 API docs in sources 0.1 is intended to be stable, 0.2 will start soon and will be unstable for a while
Ofono 1.0 http://git.kernel.org/?p=network/ofono/ofono.git;a=tree;f=doc No guarantees at present, but has gotten more stable recently
WebKit-Clutter 1.8.0 No stable releases yet
libexif 0.6.20 http://libexif.sourceforge.net/api/ No formal guarantees, but it’s very stable
TagLib 1.7 http://developer.kde.org/~wheeler/taglib/api/index.html

Conclusion473

Open Source has been chosen in order to be able to reuse code that is freely474

available and for its customization potential. It is also desired to keep the plat-475

form up-to-date with fresh new open source releases as they come about. While476

choosing to leverage Open Source software does lower cost and the required477

investment significantly, it does bring with it some challenges when compared478

to building everything and controlling the whole platform, especially when it479

comes to the tension between stability and novelty.480

Those challenges will have to be met and worked upon on a case-by-case basis,481

and trade-offs will have to be made. Like other distributors of open source482

software have done over the years, delaying adoption of a particular technology483

or newer versions of a core package goes a long way in ensuring platform stability484

and providing safe and manageable upgrade paths, so it is certainly an option485

that must be considered. Other solutions should of course be considered and486

planned for, including shipping more versions of the same library in parallel.487

Limiting the API that is considered supported and requiring that some libraries488

be statically linked or be shipped along with the program are also tools that489

should be used where necessary.490

16

http://telepathy.freedesktop.org/doc/telepathy-glib/
http://telepathy.freedesktop.org/doc/telepathy-glib/
http://telepathy.freedesktop.org/doc/folks/c/
http://freedesktop.org/software/pulseaudio/doxygen/
http://pulseaudio.org/wiki/WritingVolumeControlUIs
http://git.kernel.org/?p=bluetooth/bluez.git;a=tree;f=doc
http://developer.gnome.org/libecal/3.3/
http://api.syncevolution.org/
http://gupnp.org/docs
http://developer.gnome.org/gdata/unstable/
http://git.kernel.org/?p=network/ofono/ofono.git;a=tree;f=doc
http://libexif.sourceforge.net/api/
http://developer.kde.org/~wheeler/taglib/api/index.html

	New releases and API stability
	API and ABI stability strategies
	The Android approach
	The iOS approach
	The Apertis/OpenSource approach
	The role of limiting the supported API surface
	How would incompatible changes impact the product and how to handle them?
	The GTK+ upgrade and a Clutter API break
	When a core library breaks
	When a ``leaf'' library breaks ABI
	ABI is not just library symbols
	The move to Wayland
	The GTK+ and Clutter merger

	API Support levels
	Custom APIs
	Enabling APIs
	OS APIs
	Internal APIs
	External APIs
	Differing stability levels
	Maintaining API stability

	Components
	Conclusion

