
Text To Speech

Contents1

Text To Speech 22

Introduction . 23

Terminology and concepts . 24

Text to speech (TTS) . 25

Voice . 26

Use cases . 27

News application . 28

Back in a news application . 39

New e-mail notification . 310

New e-mail notification then going back 311

New meeting notification then cancelled 312

Incoming phone call . 413

Voice installed with the SDK . 414

Installable voice bundle . 415

Voice backend in the automotive domain 416

Installable languages . 417

Voice configuration . 418

Per-request emphasis . 419

Non-phonetic place names . 420

Driving abroad . 521

Multiple concurrent TTS requests 522

Permissions to use TTS API . 523

Multiple output speakers . 524

Custom TTS implementation in an application 525

Non-use-cases . 626

Accessibility for users with reduced vision 627

Requirements . 628

Basic TTS API . 629

Progress signalling API . 630

Output policy decided by audio manager 631

Output streams are mixable . 732

Runtime-swappable voice backends 733

Installable voice backends . 734

Default SDK voice backend . 735

Voice backends are not latency sensitive 836

System-wide voice configuration 837

Pronunciation data for non-phonetic words 838

Per-request language support . 839

Support for concurrent requests 840

Prioritisation for concurrent requests 941

Output routing policy . 942

Permission for using TTS system 943

Existing text to speech systems . 944

Android . 1045

2

iOS . 1046

Previous eCore TTS API . 1047

speech-dispatcher . 1148

TTS voices . 1149

Approach . 1250

Overall architecture . 1351

Alternative centralised design . 1352

Use of speech-dispatcher . 1353

TTS library . 1454

Installable and swappable backends 1455

SDK default backend . 1556

Global configuration . 1557

Per-request configuration . 1658

Sound icons . 1659

Request prioritisation . 1660

PulseAudio output . 1761

Testability . 1862

Security . 1963

Suggested roadmap . 2064

Requirements . 2065

Summary of recommendations . 2166

Appendix A: Suggested TTS API . 2167

Text To Speech68

Introduction69

This documents possible approaches to designing an API for text to speech70

(TTS) services for an Apertis system in a vehicle.71

This document proposes an API for the text to speech service in Appendix: A72

suggested TTS API. This API is not finalised, and is merely a suggestion. It73

may be refined in future versions of this document, or when implementation is74

started.75

The major considerations with a TTS API are:76

• Simple API for applications to use77

• Swappable voices through the application bundling system and application78

store79

• Output priorities controlled by the same set of audio manager policies80

which control other application audio output81

3

Terminology and concepts82

Text to speech (TTS)83

Text to speech (TTS) is the process of converting a string of text into spoken84

words in the user’s language, to be outputted as an audio stream.85

Voice86

In the context of TTS, a voice is an engine for producing spoken words. As with87

the conventional meaning of the word, the voice may have certain characteristics,88

such as gender, regionality or manners of speech. The most important quality89

of a voice is its understandability and correctness of pronunciation.90

Use cases91

A variety of use cases for application usage of TTS services are given below.92

Particularly important discussion points are highlighted at the bottom of each93

use case.94

News application95

The user has installed a news application, and wants it to read the headlines96

and articles aloud as they drive. If they are waiting in a traffic queue, they want97

to be able to quickly find the current paragraph in the article on-screen so they98

can read it themselves to speed things up.99

Back in a news application100

The user has a news reader application open on a specific article, which is being101

read aloud. The user presses the back button to close the article and return102

to the list of headlines. TTS output needs to stop for that article. If an audio103

source was playing before the user started reading the article (for example, some104

music), its playback may be resumed where it was paused.105

New e-mail notification106

The user’s e-mail client is reading an e-mail aloud to the user, scrolling the107

e-mail as reading progresses. A new e-mail arrives, which causes a ‘new e-mail’108

notification to be sent to the TTS system.109

The OEM wants control over the policy of how the two TTS requests are played:110

• The system could pause reading the original e-mail, read the notification,111

then resume reading the original e-mail; or112

• it could pause reading the original e-mail, read the notification, then not113

resume reading the original e-mail; or114

• it could continue reading the original e-mail at a lower volume, and read115

the notification louder mixed over the top.116

4

The OEM wants these policies to not be overridable by any application-specific117

policy such as the ones described in New e-mail notification then going back,118

New meeting notification then cancelled, Incoming phone call.119

New e-mail notification then going back120

The user’s e-mail client is reading an e-mail aloud to the user, scrolling the121

e-mail as reading progresses. A new e-mail arrives, which causes a ‘new e-mail’122

notification to be sent to the TTS system. This pauses reading the original123

e-mail and starts reading the notification, as notifications have a higher priority124

than reading e-mails.125

While the notification is being read, the user presses the ‘back’ button to go back126

to their list of e-mails. This should cancel reading out the old e-mail (which is127

currently paused), but should not cancel the ‘new e-mail’ notification, which is128

still being played.129

New meeting notification then cancelled130

The user’s e-mail client is reading them an invitation to a meeting. While read-131

ing the invitation, the meeting is cancelled by the organiser, and a notification132

is displayed informing the user of this. This notification is read by the TTS133

system, interrupting it reading the original meeting invitation. Once the notifi-134

cation has finished being read, the e-mail client should not resume reading the135

original invitation.136

Incoming phone call137

The user’s e-mail client is reading an e-mail aloud to the user. Part-way through138

reading, a phone call is received. TTS output for the e-mail needs to be auto-139

matically paused while the phone ringtone is played and the call takes place.140

Once the call has finished, the e-mail application may want to continue reading141

the user’s e-mail aloud, or may cancel its output.142

Voice installed with the SDK143

A developer wants to develop an application using the SDK with TTS function-144

ality, and needs to test it using a voice available in the SDK.145

Installable voice bundle146

A user does not like how the default TTS voice for their vehicle sounds, and147

wishes to change it to another voice which they can download from the Apertis148

application store. They wish this new voice to be used by default in future.149

5

Voice backend in the automotive domain150

An OEM may wish to provide a proprietary TTS voice as part of the software151

in their automotive domain. They want this voice to be used as the default for152

TTS requests from the CE domain as well.153

Installable languages154

A vehicle has already been released in various countries, but the OEM wishes to155

expand into other countries. They need to add support for additional languages156

to the TTS system.157

Voice configuration158

The user finds that the TTS system reads text too slowly for them, and they159

wish to speed it up. They edit their system preferences to increase the speed,160

and want this to take effect across all applications which use TTS.161

Per-request emphasis162

A news reader application needs to differentiate between TTS output for article163

headings and bodies. It wishes to read headings slightly louder and more slowly164

than it reads bodies. However, the application must not be allowed to make165

TTS requests so loud that they distract the driver.166

Non-phonetic place names167

The navigation application is reading turn-by-turn route guidance aloud, includ-168

ing place names. Various place names are not pronounced phonetically, and the169

navigation system needs to make sure the TTS system pronounces them cor-170

rectly.171

Driving abroad172

When driving abroad, the navigation application needs to read the instructions173

“Turn left at the next junction, signposted ‘Paris nord’.”, a sentence which con-174

tains both English and French. The speech in each language should be pro-175

nounced using the correct pronunciation rules for that language.176

Multiple concurrent TTS requests177

The user is listening to their e-reader read a book aloud using TTS, while they178

are driving and using the audio turn-by-turn instructions from the navigation179

application. Whenever the navigation application needs to read an instruction,180

the e-reader output should be temporarily paused or its volume reduced, and181

resumed after the navigation instruction has been read, so that the user doesn’t182

get confused.183

6

It is understood that the current quality of TTS implementations is not sufficient184

to read an e-book to the user without causing them significant discomfort. This185

use case is intended to demonstrate the need for the system to handle multiple186

pending TTS requests. E-reader output may become possible in the future.187

Permissions to use TTS API188

The user has installed a game application for their passenger to play, and wants189

to be sure that it will not start reading instructions aloud using the TTS service190

while they are driving. They want to disallow the application permission to use191

the TTS API — either entirely, or just while driving.192

Multiple output speakers193

A vehicle has a single main field speaker, plus two sets of headphones. Each194

set of headphones is associated with a different head unit. TTS audio which195

pertains to the entire system should be output through all three speakers; TTS196

audio which pertains to an application only on one of the head units should197

only be output through that head unit’s headphones.198

Custom TTS implementation in an application199

An application developer wants to port an existing application from another200

platform to Apertis. The application is a large one, and has its own tightly201

integrated TTS system which would output directly to the audio manager. This202

must be possible.203

Non-use-cases204

The following use cases are not in scope to be handled by this design — but205

they may be in scope to be handled by other components of Apertis. Further206

details are given in each subsection below.207

Accessibility for users with reduced vision208

While TTS is often used in software to provide accessibility for users with re-209

duced vision, who otherwise cannot see the graphical UI clearly, that is not a210

goal of the TTS system in Apertis. It is intended to reduce driver distraction by211

reducing the need for the driver to look at the graphical UI, rather than making212

the UI more accessible.213

Requirements214

Basic TTS API215

Implement a basic TTS API with support for speaking text; and pausing, re-216

suming and cancelling specific requests.217

7

See News application, Back in a news application, New e-mail notification then218

going back.219

Progress signalling API220

The TTS system must be able to signal an application as output progresses221

through the current request. Signals must be supported for output start and222

end, and may be supported for per-word progress through the text. Signals223

must also be supported for pausing and resuming output.224

These signals are intended to be used to update the client application’s UI to225

correspond to the output progress. For example, if a notification is being read226

aloud, the notification window should be hidden when, and only when, output227

is finished.228

See News application, New e-mail notification then going back229

Output policy decided by audio manager230

The policy deciding which TTS requests are played, which are paused, when231

they are resumed, and which are cancelled altogether, must be determined by232

the system’s audio manager.233

An application may be able to implement its own policy (for example, to always234

cancel a TTS request if it is paused), but it must not be able to override the235

audio manager’s policy, for example by preventing a request from being paused,236

or by increasing the priority of a request so it is played in preference to another.237

If the audio manager corks a TTS output stream (for example, if all audio output238

needs to be stopped in order to handle a phone call), the TTS daemon must239

pause the corresponding client application request, and notify the application.240

Once the output stream is uncorked, the client application request must be241

resumed, and the application notified, unless the application has cancelled that242

request in the meantime. By cancelling the request in the signal handler, a client243

application can ensure that TTS output is not resumed after the stream would244

have been uncorked, allowing for various resumption policies to be implemented.245

See New e-mail notification then going back, New meeting notification then246

cancelled, Incoming phone call.247

Output streams are mixable248

Multiple TTS audio streams from within a single application, and from multiple249

applications, must be mixable by the audio manager, to allow implementing the250

policy of lowering the volume of one stream while playing a more important251

stream over the top.252

See New e-mail notification.253

8

Runtime-swappable voice backends254

The TTS system must support different voice backends. Only one backend255

has to be active at once, but backends must be swappable at runtime if, for256

example, the user installs a new voice from the store, or if the OEM installs a257

voice backend supporting more languages (requirement 5.6).258

TTS requests queued or being output at the time a new voice backend is selected259

should continue using the old voice. New TTS requests should use the new voice.260

See Voice installed with the SDK, Voice configuration.261

Installable voice backends262

The user must be able to install additional voices from the Apertis application263

store; and an OEM must be able to install additional voices before sale of264

a vehicle to support additional languages. These voices must be available to265

choose as the default for all TTS output.266

See Installable voice bundle, Installable languages.267

Default SDK voice backend268

A voice backend must be shipped with the SDK by default, to allow application269

development against the TTS system.270

See Voice installed with the SDK.271

Voice backends are not latency sensitive272

Some vehicles may have a TTS voice backend implemented in the automotive273

domain, which means all TTS requests would be carried over the inter-domain274

communications link, incurring some latency. The TTS system must not be275

sensitive to this latency.276

See Voice backend in the automotive domain.277

System-wide voice configuration278

The system must have a single default voice, which is used for all TTS out-279

put. The configuration settings for this voice must be settable in the system280

preferences, but not settable by individual applications.281

Specific preferences, such as volume or speech rate, may be settable on a per-282

application basis to modify the system-wide defaults if needed. These mod-283

ifications must have limited ability to distract the driver. For example, an284

application may apply a modifier to the volume of between 0.8 and 1.2 times285

the current system-wide output volume.286

See Voice configuration.287

9

Pronunciation data for non-phonetic words288

There must be a way for applications to provide pronunciations for non-phonetic289

words. This may be implemented as a static list of overrides for certain words,290

or may be implemented as a runtime API. Pronunciations must be associated291

with a specific language, so that the correct pronunciation is used for the user’s292

current system language. If no more suitable pronunciation is available for a293

word, the system must use the current voice’s default pronunciation.294

See Non-phonetic place names, Driving abroad.295

Per-request language support296

The TTS system must support specifying the language of each request (or even297

parts of a request), so that requests which contain text in multiple languages298

(for example ‘Turn left onto Rue de Rivoli’) are pronounced correctly.299

The system language should be used by default if the application doesn’t specify300

a language, or if the specified language is not supported by the current voice.301

See Driving abroad.302

Support for concurrent requests303

The TTS system must support accepting TTS output requests from multiple304

applications concurrently, and queueing them for output sequentially.305

See Multiple concurrent TTS requests.306

Prioritisation for concurrent requests307

The TTS system must support prioritising TTS requests from certain appli-308

cations over requests from other applications, according to the urgency of the309

output (for example, turn-by-turn navigation instructions are more urgent than310

news reading). Similarly, it must support prioritising requests from within a311

single application.312

Prioritisation must be performed on a per-request basis, as one application313

may make requests which are high and low priority. Note that this does not314

necessarily mean that the priority policy is implemented in the TTS system; it315

may be implemented in the audio manager. This requirement simply means that316

the TTS API must expose support for prioritising requests, and must forward317

that prioritisation information as ‘hints’ to whichever component implements318

the priority policy.319

See Multiple concurrent TTS requests.320

10

Output routing policy321

On high-end vehicles, there may be multiple output speakers, attached to differ-322

ent head units. The audio manager must be able to associate each TTS request323

with an application so that it can determine which speaker or speakers to play324

the audio on.325

See Multiple output speakers.326

Permission for using TTS system327

Applications must only be allowed to use the TTS system if they are allowed to328

output audio. This is subject to the application’s permissions from its manifest,329

and may additionally be subject to the user’s preferences for audio output. The330

user may be able to temporarily disable audio output for a specific application.331

If any TTS-specific permissions are implemented in the system, it must be332

understood that an application may circumvent them by embedding its own333

TTS system (or by playing pre-recorded audio files, for example).334

See Permissions to use TTS API, Custom TTS implementation in an applica-335

tion.336

Existing text to speech systems337

This chapter describes the approaches taken by various existing systems for338

allowing applications to use TTS services, because it might be useful input for339

Apertis’ decision making. Where available, it also provides some details of the340

implementations of features that seem particularly interesting or relevant.341

Android342

Android provides a text to speech API1 for converting text to audio to output,343

or to audio in a file.344

It provides an API for matching pieces of text with custom pre-recorded sounds345

(which it calls ‘earcons’), for the purpose of embedding custom noises (such as346

ticking noises) into TTS output, or for providing custom pronunciations for the347

text.348

It supports voices which support different languages, and provides the union of349

those languages to the developer, who may specify which language the provided350

text is in.351

The user controls the preferences for the voice, apart from pitch and speech352

rate, which applications may set individually.353

For determining the progress of the TTS engine through an utterance, the API354

provides a callback function which is called on starting and ending audio output.355

1http://developer.android.com/reference/android/speech/tts/package-summary.html

11

http://developer.android.com/reference/android/speech/tts/package-summary.html
http://developer.android.com/reference/android/speech/tts/package-summary.html

iOS356

iOS provides TTS support through its speech synthesiser API2. In this API, text357

to be spoken is passed to a new utterance object, which allows its voice, volume,358

speech rate and pitch to be modified. The utterance is then passed to the service,359

which queues it up to be spoken, or starts speaking it if nothing else is queued.360

Methods on the service allow output to be paused, cancelled or resumed. When361

pausing speech, the API provides the option to pause immediately, or after362

finishing speaking the current word.363

Progress through speaking an utterance can be tracked using a delegate, which364

receives calls when speech starts, stops, is paused, resumes, and for each word365

in the text as it is spoken (intended for the purposes of highlighting words366

on-screen).367

It is worth noting that iOS is recognised as highly competent in the field of368

accessibility for the blind or partially sighted, partly due to its well designed369

TTS system.370

Previous eCore TTS API371

The TTS API previously exposed by eCore gave a method to speak a given372

string of text, a method to stop speaking, and one to check whether speech was373

currently being output. It gave the choice of two voices, but no other options for374

configuring them. It provided two signals for notifying of audio output starting375

and ending.376

speech-dispatcher377

speech-dispatcher3 is an abstraction layer over multiple TTS voices. It uses a378

client–server architecture, where multiple clients can connect and send text to379

the server to be outputted as audio. The protocol used between clients and the380

server is the Speech Synthesis Interface Protocol4, a custom text-based protocol381

operated over a Unix domain socket.382

Prioritisation between text from different clients is supported, but clients are383

not strictly separated by the server: one client can control the settings and384

output for another client.385

The client library has C and Python APIs. The C API is pure C, and is not GLib-386

based. The backend supports a few different voices (see TTS voices): Festival,387

espeak, pico, and a few proprietary systems. Writing a new voice backend, to388

connect an existing external voice engine to speech-dispatcher, is not a major389

task.390

2https://developer.apple.com/library/ios/documentation/AVFoundation/Reference/
AVSpeechSynthesizer_Ref/index.html

3http://devel.freebsoft.org/speechd
4http://devel.freebsoft.org/doc/speechd/ssip.html

12

https://developer.apple.com/library/ios/documentation/AVFoundation/Reference/AVSpeechSynthesizer_Ref/index.html
http://devel.freebsoft.org/speechd
http://devel.freebsoft.org/doc/speechd/ssip.html
https://developer.apple.com/library/ios/documentation/AVFoundation/Reference/AVSpeechSynthesizer_Ref/index.html
https://developer.apple.com/library/ios/documentation/AVFoundation/Reference/AVSpeechSynthesizer_Ref/index.html
http://devel.freebsoft.org/speechd
http://devel.freebsoft.org/doc/speechd/ssip.html

The system supports ‘sound icons’ which associate a sound file with a given text391

string, and allow that sound to be played when that string is found in input.392

The settings allow control over the output language, whether to speak punctu-393

ation characters, the speech rate, pitch, and volume.394

Speech output can be paused, resumed and cancelled once started. The API395

supports notifying when output is started, stopped, and when pre-defined ‘index396

marks’ are reached in the input string.397

Backends for speech dispatcher are run as separate processes, communicating398

with the daemon via stdin and stdout. They have individual configuration files.399

TTS voices400

Here is a brief comparative evaluation of various TTS engines and voices which401

are available already.402

espeak403

• Supports many languages (importantly, non-Latin languages)404

• Sounds robotic405

• Can be used with mbrola voices to make it more natural; not supported406

very well by speech-dispatcher (http://espeak.sourceforge.net/mbrola.407

html)408

• Already packaged for Ubuntu (as are mbrola voices)409

• http://espeak.sourceforge.net/410

Festival411

• Sounds less robotic than espeak, but still quite robotic (example here:412

http://tts.speech.cs.cmu.edu:8083/)413

• A bit slower414

• Already packaged for Ubuntu415

• Supports 3 languages (English, Spanish and Welsh)416

• http://www.cstr.ed.ac.uk/projects/festival/417

pico418

• License: Apache License v2419

• By SVOX; used in Android420

• Written in Java; C API available in picoapi.h421

• Supports 37 languages (importantly, non-Latin languages)422

• Sounds very good (example here: https://svoxmobilevoices.wordpress.423

com/demos/)424

• Not as well tested through speech-dispatcher425

• https://en.wikipedia.org/wiki/SVOX426

13

http://espeak.sourceforge.net/mbrola.html
http://espeak.sourceforge.net/mbrola.html
http://espeak.sourceforge.net/mbrola.html
http://espeak.sourceforge.net/
http://tts.speech.cs.cmu.edu:8083/
http://www.cstr.ed.ac.uk/projects/festival/
https://svoxmobilevoices.wordpress.com/demos/
https://svoxmobilevoices.wordpress.com/demos/
https://svoxmobilevoices.wordpress.com/demos/
https://en.wikipedia.org/wiki/SVOX

• Publicly available source; https://android.googlesource.com/platform/427

external/svox/428

• Already packaged for Debian and Ubuntu429

• As this is a component of Android, we are not sure about the openness430

of the development practices, and whether it’s possible to get involved in431

them.432

• It’s certainly possible to file bugs about the packaging with the Debian433

bug tracker5, but that won’t necessarily help for bugs in the source itself.434

acapela435

• Non-FOSS436

• Best quality437

• http://www.acapela-group.com/438

Nuance439

• Non-FOSS440

• Has been used previously in eCore441

• http://www.nuance.com/for-business/text-to-speech/vocalizer/index.442

htm#demo443

Approach444

Based on the above research (Existing text-to-speech systems) and Require-445

ments, we recommend the following approach as an initial sketch of a text to446

speech system. A suggested API for the TTS service is given in Appendix: A447

suggested TTS API.448

Overall architecture449

As TTS output from an application is essentially another audio stream, and450

no privilege separation is required for turning a string of text into an audio451

stream, the design follows a ‘decentralised’ pattern similar to how GStreamer is452

implemented.453

In order to produce TTS output, an application can link to a TTS library,454

which provides functionality for turning a text string into an audio stream. It455

then outputs this audio stream as it would any other, sending it to the audio456

manager, along with some metadata including an unforgeable identifier for the457

application, and potentially other metadata hints for debugging purposes. The458

audio manager applies the same priority policy which it applies to all audio459

streams, and determines whether to allow the stream to be played, pause it460

while another stream is played then resume it, or cancel it entirely. This is done461

using standard audio manager mechanisms using PulseAudio.462

5https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=libttspico0;dist=unstable

14

https://android.googlesource.com/platform/external/svox/
https://android.googlesource.com/platform/external/svox/
https://android.googlesource.com/platform/external/svox/
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=libttspico0;dist=unstable
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=libttspico0;dist=unstable
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=libttspico0;dist=unstable
http://www.acapela-group.com/
http://www.nuance.com/for-business/text-to-speech/vocalizer/index.htm#demo
http://www.nuance.com/for-business/text-to-speech/vocalizer/index.htm#demo
http://www.nuance.com/for-business/text-to-speech/vocalizer/index.htm#demo
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=libttspico0;dist=unstable

The TTS library receives feedback about the state of the audio channel, and463

passes this back to the application in the form of signals, which the application464

may use to update its UI, or implement its own policy for enqueuing or cancelling465

requests (or it may ignore the signals).466

Alternative centralised design467

The other major option is for a centralised design, where all TTS requests are468

sent to a TTS service (running as a separate process), which decides on relative469

priorities for them, converts them from text to audio, and forwards them to the470

audio manager.471

There is no need for this design: there is no need for the additional privilege472

separation, and it complicates the application of audio policy, since it now has473

to be applied in the TTS service and the audio manager.474

Use of speech-dispatcher475

Speech dispatcher is an existing FOSS system which is the standard choice476

for systems like this. However, it is based around a centralised design which477

does not fit with our suggested architecture — a large part of speech-dispatcher478

is concerned with implementing a central daemon which handles connections479

and requests from multiple clients, prioritises them, then outputs them to the480

audio manager. As described in Overall architecture and Alternative centralised481

design, this is functionality which our recommended design does not need.482

Additionally, speech-dispatcher has the disadvantages that it:483

• does not enforce separation between clients, meaning they may control484

each others’ output; and485

• provides a C API which is not GLib-based, so would be hard to introspect486

and expose in other languages (such as JavaScript).487

For these reasons, and due to its centralised architecture, we recommend not488

using speech-dispatcher. However, it may be possible and useful to extract489

relevant parts of its code and turn them into shared libraries to be used in the490

Apertis TTS library. The rest of this document will cover the design with no491

reference to speech-dispatcher, in the knowledge that it might substitute for492

some of the implementation work where possible.493

TTS library494

The TTS library would be a new shared library which can be linked into appli-495

cations to essentially provide the functionality of turning a text string into an496

audio stream. It would provide the following major APIs:497

• Say a text string.498

• Stop, pause and resume speech.499

15

• Signal on starting, pausing, resuming and ending audio output, plus on500

significant progress through output.501

• Set the language for a request.502

• ‘Sound icon’ API for associating audio files with specific strings.503

The stop, pause and resume APIs would operate on specific requests, rather504

than all pending requests from the application. This allows for an application505

to cancel one TTS output while continuing to say another; or to cancel one506

output while another is paused. The API should be implemented as a queue-507

based one, where the application enqueues a string to be read, and receives508

a handle identifying it in the queue. The TTS library can prioritise requests509

within the queue, and hence requests may not be processed for some time after510

being enqueued. Signals convey this information to the application.511

The progress signal should be emitted at the discretion of the TTS library, to512

signal significant progress to the application in outputting the TTS request. For513

example, it could be emitted once per sentence, or once per word, or not at all.514

It returns an offset (in Unicode characters) from the start of the input text.515

The library’s audio output would provided in a format suitable for passing516

directly to PulseAudio, or into GStreamer for further processing.517

The TTS library would implement loading of a TTS backend into the process,518

and would load and apply the system settings for TTS output.519

Installable and swappable backends520

The TTS library would implement voice backends as dynamically loaded shared521

libraries, all installed into a common directory. It must monitor this directory522

at runtime to detect newly installed voice backends; for an application bundle523

to install a new backend, it would have to install or symlink the library into this524

directory.525

The TTS library should not care how a voice backend is implemented internally,526

as long as it implements a standard backend interface. It may be possible, for527

example, to re-use a lot of the code from speech-dispatcher’s backend modules6.528

Each voice backend must provide an interface for converting text to audio, and529

returning that audio to the TTS library — it should not implement outputting530

the audio to the audio manager itself. Backends must provide a way of enumer-531

ating and configuring their voice options (such as volume, pitch, accent, etc.),532

including a way of specifying that an option is read-only or unsupported. It is533

not expected that all backends will support all functionality of the TTS library.534

The backend interface must be tolerant of latency in the backends, in order535

to support backends which are implemented in the automotive domain. This536

means that all functions must be asynchronous7.537

6http://git.freebsoft.org/?p=speechd.git;a=tree;f=src/modules;hb=HEAD
7https://developer.gnome.org/gio/stable/GAsyncResult.html

16

http://git.freebsoft.org/?p=speechd.git;a=tree;f=src/modules;hb=HEAD
https://developer.gnome.org/gio/stable/GAsyncResult.html
http://git.freebsoft.org/?p=speechd.git;a=tree;f=src/modules;hb=HEAD
https://developer.gnome.org/gio/stable/GAsyncResult.html

SDK default backend538

We recommend Pico8 as the default backend to ship with the SDK. It is freely539

licenced, and supports 37 languages including non-Latin languages. It is used540

on Android, so is relatively stable and mature.541

Global configuration542

Configuration options for the voice backends should be stored in GSettings (See543

Preferences and Persistence9), and should be stored once (not per-backend).544

The semantics of each configuration option must be rigorously defined, as each545

backend must convert those options to fit its own configuration interface. If a546

backend has more options in its configuration interface than are provided by the547

global TTS library configuration, it must use sensible, unconfigurable, defaults548

for the other options.549

Configuration options may include:550

• Voice to use551

• Whether to vocalise punctuation552

• Voice type (male or female)553

• Speech rate554

• Pitch555

• Volume556

By storing the options in GSettings, it becomes possible to apply AppArmor557

policy to control access to them so that, for example, applications which use558

the TTS library are only allowed to read the settings, and only the system559

preferences application is allowed to modify them.560

Per-request configuration561

Configuration which is exposed to applications via the TTS API could be:562

• Pitch563

• Speech rate564

• Volume565

These options must be exposed purely as modifiers on the system-wide values.566

These modifiers could be defined symbolically, for example as a set of three567

volume modifiers:568

• Emphasised (120% of system-wide volume)569

• Normal (100% of system-wide volume)570

• De-emphasised (80% of system-wide volume)571

A non-symbolic numerical modifier might be introduced in future.572

8https://android.googlesource.com/platform/external/svox/
9https://jwd.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/

17

https://android.googlesource.com/platform/external/svox/
https://jwd.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/
https://android.googlesource.com/platform/external/svox/
https://jwd.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/

The audio manager is responsible for limiting the maximum volume of any audio573

stream, to avoid a malicious or faulty application from setting the volume too574

high as to distract the driver.575

Sound icons576

Sound icons are a feature provided by speech-dispatcher, which we could use as577

the basis for our own implementation, as this would allow re-use of the relevant578

features in voice backends.579

Sound icons could be used for identifying punctuation, for example, or for clari-580

fying the pronunciation of certain words. It’s suggested that applications install581

sound icons at install time, in a per-application directory which the application582

points the TTS library at to look up when asked to play a sound icon. Each583

sound icon should have an associated language (or explicitly no associated lan-584

guage), so that the correct sound icon file can be loaded according to a TTS585

request’s language.586

Sound icons should be playable via a TTS library API, similarly to how text587

output is requested. They should be provided in WAV format, as this is what588

the existing speech-dispatcher backends expect.589

Request prioritisation590

There are two dimensions to prioritisation of requests: within a single applica-591

tion, and across multiple applications.592

Requests from within a single application should be handled using a request593

queue within the TTS library. This allows squashing similar requests, or bump-594

ing other requests so they are played before other requests from the same appli-595

cation.596

It is suggested that the speech-dispatcher priorities10 are used for within a single597

application, including their semantics. For example, the TTS library request598

queue would squash multiple progress requests so that only one is played at599

once.600

These priorities should be attached to audio output when it is sent to the audio601

manager, as a hint to assist it in its policy decisions.602

Requests from multiple applications are prioritised by the audio manager, which603

uses the audio priority of each application (whether it is an entertainment or604

interrupt source, and its numerical audio priority) from the application’s man-605

ifest to determine which requests to play, which to pause then resume, and606

which to cancel entirely. The application’s audio priority is under the control607

of the OEM, rather than the application developer, so application developers608

cannot use this to always output audio at an inflated priority and deny other609

applications audio output.610

10http://devel.freebsoft.org/doc/speechd/ssip.html#Priority-Categories

18

http://devel.freebsoft.org/doc/speechd/ssip.html#Priority-Categories
http://devel.freebsoft.org/doc/speechd/ssip.html#Priority-Categories

See the Audio Management design611

There is one situation where an application with a low priority may need to612

output a TTS request at a higher overall priority than an application with a613

high priority: when emitting a pop-up notification via the notification service.614

This should be handled by having notifications submitted as TTS requests by615

the notification service itself, rather than by the application which produced616

the notification. This allows the audio manager to use the notification service’s617

priority for policy decisions, rather than the original application’s priority.618

PulseAudio output619

Output from the TTS library should be sent to PulseAudio in order to be mixed620

with other TTS and non-TTS audio streams and sent to the hardware for output.621

It is PulseAudio and the audio manager which implement the priority policies622

described above.623

In order to differentiate TTS output from different applications, appropriate624

metadata should be attached to the audio stream to identify the application,625

its internal priority for the TTS request, and the fact that the audio is a TTS626

request (as opposed to other audio content). The application identifier must627

be unforgeable (i.e. it must come from a trusted source, like the kernel or628

D-Bus daemon), as it is used as the basis for policy decisions. The internal629

priority and TTS request flag are entirely under the control of the application630

(i.e. forgeable), and therefore must only be used as hints by the audio manager.631

Additional unforgeable metadata may come from the application’s manifest file,632

which is not under the control of the application developer, and can be uniquely633

looked up by the application’s trusted identifier.634

The audio manager most likely will not use forgeable metadata from the applica-635

tion, but this data could be useful for identifying audio streams when debugging,636

for example.637

If an application wishes to submit multiple TTS requests simultaneously, and638

have the audio manager mix them or decide which one to prioritise, it must639

have multiple connections to PulseAudio.640

If, as a result of applying the priority policy, the audio manager corks an ap-641

plication’s TTS output stream, the TTS library must pause the corresponding642

TTS request and notify the application using a signal. Once the request is un-643

corked, the TTS library must unpause the request and notify the application644

again — unless the application has cancelled the request in the meantime, in645

which case the request is already cancelled and removed.646

The same is true if the audio manager cancels an application’s TTS output647

stream: the TTS library must cancel the corresponding TTS request and notify648

the application using a signal.649

Note that the audio manager’s pausing and resuming of TTS requests is separate650

19

from the pause and resume APIs available to the application. The application651

cannot call its resume method to resume a TTS request which the audio manager652

has paused. Similarly, the audio manager cannot call its resume method to653

resume a TTS request which the application has paused. This can be thought654

of as separately pausing or resuming both ends of the audio channel between655

an application and the audio manager.656

Testability657

Testing the TTS system can be split into three major areas: checking that658

the TTS library and its various voice backends work; checking that the audio659

manager correctly applies its priority policies to incoming TTS audio streams660

and normal audio streams; and integration testing of audio output from an661

application calling a TTS API.662

The former can be achieved using unit tests within the TTS library project,663

which test various components of the library in isolation. For example, they664

could compare TTS audio output streams against stored ‘golden’ expected out-665

put sound files.666

The audio manager testing should be implemented as part of the audio man-667

ager’s test plan, ensuring that TTS audio channel metadata is included in a668

variety of test situations.669

This should be described in the Audio Management design.670

Finally, the integration testing requires the audio output to be checked, so is671

infeasible to implement as an automated test, and would have to be a manual672

test where the human tester verifies that the output sounds as expected for a673

given set of input situations (requests from a test client).674

Security675

The security properties being implemented by the system are:676

• Applications should be independent, in that one application cannot change677

the TTS settings for another application, or affect another application’s678

TTS output other than through prioritisation of requests as controlled by679

the audio manager.680

• Applications must not be able to play a TTS request if the audio man-681

ager has disallowed or paused it (availability of audio output to other682

applications).683

• Applications should not be able to set the system-wide TTS preferences.684

• Applications should not be able to determine the content of other appli-685

cations’ TTS requests (confidentiality of requests).686

• Applications must only be allowed to use the TTS system if they have687

permission to output audio.688

20

These are implemented through the separation of audio priority policies from the689

TTS library, by implementing them in the audio manager. The audio manager690

has a non-forgeable identifier for the application which originated each TTS691

audio stream, and the forgeable priority hints which come from the application692

are not allowed to override the application’s audio priority.693

Audio output from an application is subject to that application having permis-694

sion to output audio, which is enforced by the audio manager.695

Independence and confidentiality of application audio channels is implemented696

as for all audio channels, by having separate connections from each application697

to the audio manager.698

Integrity of system-wide TTS preferences is implemented by the AppArmor699

policy controlling access to those preferences in GSettings.700

Loadable voice backends701

The TTS library, and hence each application which links to it, needs read-only702

and execute access to the loadable voice backend libraries, plus any resources703

needed by those voices. It also needs read-only access to the TTS system-wide704

preferences in GSettings.705

Suggested roadmap706

There are few opportunities for splitting this system up into stages. The TTS707

library needs to be written first, including its loadable voice backend interface708

and the first voice backend. More complex features like sound icons could be709

ignored in the first version of the library. With this working, applications could710

start to use the TTS APIs. The unit tests and integration tests for the TTS711

library should be written from the very beginning.712

With TTS output working, a second stage could implement the priority policies713

in the audio manager, and ensure those are working. The system preferences714

could also be integrated at this stage.715

A third stage could produce more voice backends (if needed), potentially includ-716

ing a voice backend which is implemented in the automotive domain, to ensure717

that asynchronous calls to the backends work.718

It is worth highlighting that aside from initially ignoring features like sound719

icons, there is little scope for simplifying the TTS API for its first implemen-720

tation. Specifically, we feel it would be a mistake to implement a non-queue-721

based API for scheduling TTS requests to begin with, and then ‘expand’ it into722

a queue-based API later on. To do so would expose applications to a lot of723

semantic changes in the API which they would then have to adapt to use. The724

TTS library API should be implemented as a queue-based one from the start.725

21

Requirements726

• Basic TTS API: Implemented as a C API on the TTS library.727

• Progress signalling API: Implemented using GObject signals emitted by728

the TTS library.729

• Output policy decided by audio manager: Implemented by passing priority730

and application identifiers to the audio manager, and it corking, uncork-731

ing, or cancelling audio streams according to its policy, using standard732

PulseAudio functionality.733

• Output streams are mixable: Audio manager may choose to not cork two734

streams, and mix them instead.735

• Runtime-swappable voice backends: TTS library loads backends from a736

directory as dynamically loaded libraries, and monitors that directory for737

changes.738

• Installable voice backends: Installed or symlinked into the backend library739

directory.740

• Default SDK voice backend: Pico to be shipped as the default backend741

for the SDK.742

• Voice backends are not latency sensitive: Voice backend interface uses743

asynchronous functions to avoid blocking the TTS library.744

• System-wide voice configuration: Stored in GSettings and read by the745

TTS library in each application which uses it. The system preferences746

application can modify the settings in GSettings.747

• Pronunciation data for non-phonetic words: Provided by an API in the748

TTS library similar to the speech-dispatcher API for ‘sound icons’.749

• Per-request language support: Provided as a per-request API to hint at750

the language the source text is written in.751

• Support for concurrent requests: Implemented by allowing multiple audio752

channel connections to the audio manager, which prioritises between them.753

• Prioritisation for concurrent requests: Implemented by allowing multiple754

audio channel connections to the audio manager, which prioritises between755

them. In-application priorities are handled by a per-application request756

queue within the TTS library.757

• Permission for using TTS system: Checked by the audio manager for each758

application which attempts to play audio (including TTS output), using759

permissions from the application’s manifest.760

Summary of recommendations761

As discussed in the above sections, we recommend:762

22

• Implementing a new TTS library, using an API like the one suggested in763

Appendix: A suggested TTS API. Parts of speech-dispatcher may be used764

to aid the implementation if appropriate.765

• Implementing voice backends as dynamically loaded libraries, potentially766

reusing much of the existing backends from speech-dispatcher.767

• Modifying the audio manager to support applying a priority policy to TTS768

requests, using the application’s audio priority, and potentially logging769

TTS-specific metadata for debugging purposes.770

• Implementing unit and integration tests for the TTS library, audio man-771

ager and TTS system as a whole.772

• Packaging and using Pico as the default voice backend in the SDK.773

• Modifying the Apertis software installer to generate AppArmor rules to774

allow access to the TTS voice backends and their resources, plus the TTS775

system settings, if an application is allowed to output audio.776

Appendix A: Suggested TTS API777

The code listing is given in pseudo-code.778

/* TTS context to contain relevant state and loaded resources and779

* settings. */780

class TtsContext {781

async TtsRequest send_request (const string text_to_say,782

TtsPriority priority=TEXT,783

const string language=null,784

TtsVoiceRate voice_rate=TtsVoiceRate.NORMAL,785

TtsVolume volume=TtsVolume.NORMAL,786

TtsPitch pitch=TtsPitch.NORMAL);787

788

async TtsRequest send_sound_icon_request (const string icon_name,789

TtsPriority priority=TEXT,790

const string language=null,791

TtsVoiceRate voice_rate=TtsVoiceRate.NORMAL,792

TtsVolume volume=TtsVolume.NORMAL,793

TtsPitch pitch=TtsPitch.NORMAL);794

}795

796

/* This represents a single pending TTS request. The object may persist797

* after the underlying request has been handled, until the application798

* programmer unrefs the object. */799

class TtsRequest {800

async void pause ();801

async void resume ();802

async void cancel ();803

23

804

/* The current state of the request. */805

property TtsRequestState state;806

807

/* The current progress of reading through the request, as an offset808

* into the original text in Unicode characters. */809

property unsigned int current_offset;810

811

/* In a GLib API, these would be GObject::notify::state and812

* GObject::notify::current_offset. */813

signal notify_state (TtsRequestState state);814

signal notify_current_offset (unsigned int current_offset);815

}816

817

enum TtsRequestState {818

PREROLL,819

PLAYING,820

PAUSED,821

FINISHED,822

CANCELLED,823

}824

825

enum TtsPriority {826

IMPORTANT,827

MESSAGE,828

TEXT,829

NOTIFICATION,830

PROGRESS,831

}832

833

enum TtsVoiceRate {834

SLOW,835

NORMAL,836

FAST,837

}838

839

enum TtsVolume {840

DEEMPHASIZED,841

NORMAL,842

EMPHASIZED,843

}844

845

enum TtsPitch846

{847

LOW,848

NORMAL,849

24

HIGH,850

}851

25

	Text To Speech
	Introduction
	Terminology and concepts
	Text to speech (TTS)
	Voice

	Use cases
	News application
	Back in a news application
	New e-mail notification
	New e-mail notification then going back
	New meeting notification then cancelled
	Incoming phone call
	Voice installed with the SDK
	Installable voice bundle
	Voice backend in the automotive domain
	Installable languages
	Voice configuration
	Per-request emphasis
	Non-phonetic place names
	Driving abroad
	Multiple concurrent TTS requests
	Permissions to use TTS API
	Multiple output speakers
	Custom TTS implementation in an application

	Non-use-cases
	Accessibility for users with reduced vision

	Requirements
	Basic TTS API
	Progress signalling API
	Output policy decided by audio manager
	Output streams are mixable
	Runtime-swappable voice backends
	Installable voice backends
	Default SDK voice backend
	Voice backends are not latency sensitive
	System-wide voice configuration
	Pronunciation data for non-phonetic words
	Per-request language support
	Support for concurrent requests
	Prioritisation for concurrent requests
	Output routing policy
	Permission for using TTS system

	Existing text to speech systems
	Android
	iOS
	Previous eCore TTS API
	speech-dispatcher
	TTS voices

	Approach
	Overall architecture
	Alternative centralised design
	Use of speech-dispatcher
	TTS library
	Installable and swappable backends
	SDK default backend
	Global configuration
	Per-request configuration
	Sound icons
	Request prioritisation
	PulseAudio output
	Testability
	Security
	Suggested roadmap
	Requirements

	Summary of recommendations
	Appendix A: Suggested TTS API

