
Connectivity documentation

Contents1

Writing ConnMan plugins . 22

Customs ConnMan Session policies . 23

Management of ConnMan Sessions . 24

WiFi radio start up behavior on ConnMan 25

Supporting new data modems in oFono 36

Writing new Telepathy Connection Managers 37

Looking inside the telepathy-rakia code 48

Writing new Folks backends . 99

Writing ConnMan plugins10

The plugin documentation in ConnMan was improved and submitted upstream.11

The documentation about writing plugins can be found on ConnMan sources in12

the following files: doc/plugin-api.txt, src/device.c and src/network.c. Example13

plugins are plugins/bluetooth.c plugins/wifi.c, plugins/ofono.c, among others.14

Customs ConnMan Session policies15

The documentation to create Session policies files for specifics users and/or16

groups can be found in ConnMan sources doc/session-policy-format.txt. The17

policies files shall be placed in STORAGEDIR/session_policy_local directory, where18

STORAGEDIR by default points to /var/lib/connman. ConnMan can recognize19

changes to this directory during runtime and update Session policies accordingly.20

Management of ConnMan Sessions21

ConnMan provides a extensive API to manage the creation, configuration and22

removal of a session, doc/manager-api.txt details how to create and destroy a Ses-23

sion through the CreateSession() and DestroySession() methods. doc/session-24

api.txt details how to use a Session. Through this API an application can ask25

ConnMan to Connect/Disconnect a Session or change its settings. The Settings26

can also be changed by writing policies files as described in the previous topic.27

The application requesting a Session needs to implement a Notification API to28

receive updates in the Session settings, such as when a Session becomes online.29

This is done via the Update() method.30

See also doc/session-overview.txt.31

The difference between using the Session API and the policy files in32

/var/lib/connman is that policy files can set policies to many sessions at the33

same time, based on user/group ID or SELINUX rules while Session API only34

changes one session at a time.35

2

WiFi radio start up behavior on ConnMan36

At the very first run ConnMan has the WiFi radio disabled by default, however37

sometimes it is important to have the radio enabled even in the first ConnMan38

run. To achieve this behavior ConnMan can be configured to enable the radio39

on it first run.40

The file STORAGEDIR/settings, where STORAGEDIR by default points to41

/var/lib/connman, shall be edited, or even created, to have the following con-42

tent:43

[WiFi]44

45

Enable=true46

This configuration will tell ConnMan at start up to enable the WiFi radio.47

Supporting new data modems in oFono48

oFono has a great support for most of the modems out there in the market,49

however some new modem may not work out-of-the-box, in this case we need to50

fix oFono to recognize and handle the new modem properly. There are a couple51

of different causes why a modem does not work with oFono. In this section we52

will detail them and show how oFono can be fixed.53

• Modem match failure: if the udevng plugin in oFono fails to match the54

new modem its code needs to be fixed to recognize the new modem. This55

kind of failure can be recognized by looking at the debug output of the56

udevng plugin (debug output is enabled when running ofonod with the57

‘-d’ option). If udevng doesn’t say anything about the new modem then58

it needs proper code to handle it. You can find a example on how to edit59

plugins/udevng.c to support a new modem in oFono git1. The oFono git60

history has many examples of patches to add support to new modems in61

plugins/udevng.c62

• Some other modems does not implement the specifications properly and63

thus oFono needs to implement ‘quirks’ to have these modems working64

properly. Many examples of fixes can be found on oFono git:65

– https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?id=66

d1ac1ba3d474e56593ac3207d335a4de3d1f4a1d67

– https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?id=68

535ff69deddda292c7047620dc11336dfb480a0d69

It is difficult to foresee the problems that can happen when trying a new modem70

due to the extensive number of commands and specifications oFono implements.71

1https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?id=
4cabdedafdc241706e342720a20bdfe3828dfadf

3

https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?id=4cabdedafdc241706e342720a20bdfe3828dfadf
https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?id=d1ac1ba3d474e56593ac3207d335a4de3d1f4a1d
https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?id=d1ac1ba3d474e56593ac3207d335a4de3d1f4a1d
https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?id=d1ac1ba3d474e56593ac3207d335a4de3d1f4a1d
https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?id=535ff69deddda292c7047620dc11336dfb480a0d
https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?id=535ff69deddda292c7047620dc11336dfb480a0d
https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?id=535ff69deddda292c7047620dc11336dfb480a0d
https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?id=4cabdedafdc241706e342720a20bdfe3828dfadf
https://git.kernel.org/cgit/network/ofono/ofono.git/commit/?id=4cabdedafdc241706e342720a20bdfe3828dfadf

Asking the oFono community2 could be very helpful to solve any issue with a72

new modem.73

Writing new Telepathy Connection Managers74

New connection managers are implemented as separated component and have75

their own process. Telepathy defines the D-Bus interfaces3 that each Connection76

Manager (CM) needs to implement. This is known as the Telepathy Specifica-77

tion.78

The Connection Managers need to expose a bus name in D-Bus that begins79

with org.freedesktop.Telepathy.ConnectionManager, for example, the telepathy-80

gabble CM, has the org.freedesktop.Telepathy.ConnectionManager.gabble bus81

name to provide its XMPP protocol interfaces.82

A client that wants to talk to the available Connection Managers in the D-Bus83

Session bus needs to call D-Bus ListActivatableNames method and search for84

names with the returned prefix.85

The most important Interfaces that a Connection Manager needs to implement86

are ConnectionManager, Connection and Channel. The ConnectionManager87

handles creation and destruction of Connection object. A Connection object88

represents a connected protocol session, such as a XMPP session. Within a89

Connection many Channel objects can be created; they are used for communi-90

cation between the application and the server providing the protocol service.91

A Channel can represent many different types of communications such as files92

transfers, incoming and outcoming messages, contact search, etc.93

Another important concept is the Handle4. It is basically a numeric ID to94

represent various protocol resources, such as contacts, chatrooms, contact lists95

and user-defined groups.96

The Telepathy Developer’s Manual5 details how to use the Telepathy API and97

thus gives many suggestions of how those should be implemented by a new98

Connection Manager.99

Studying the code of existing Connection Managers is informative when imple-100

menting a new one. Two good examples are telepathy-gabble6 for the XMPP101

protocol or telepathy-rakia7 for the SIP implementation.102

Those Connection Managers use Telepathy-GLib8 as a framework to implement103

the Telepathy Specification. The Telepathy-GLib repository has a few exam-104

2https://ofono.org/community
3http://telepathy.freedesktop.org/spec/
4http://telepathy.freedesktop.org/doc/book/sect.basics.handles.html
5http://telepathy.freedesktop.org/doc/book/
6http://cgit.freedesktop.org/telepathy/telepathy-gabble/
7http://cgit.freedesktop.org/telepathy/telepathy-rakia/
8http://cgit.freedesktop.org/telepathy/telepathy-glib/

4

https://ofono.org/community
http://telepathy.freedesktop.org/spec/
http://telepathy.freedesktop.org/doc/book/sect.basics.handles.html
http://telepathy.freedesktop.org/doc/book/
http://cgit.freedesktop.org/telepathy/telepathy-gabble/
http://cgit.freedesktop.org/telepathy/telepathy-rakia/
http://cgit.freedesktop.org/telepathy/telepathy-glib/
http://cgit.freedesktop.org/telepathy/telepathy-glib/tree/examples/README
http://cgit.freedesktop.org/telepathy/telepathy-glib/tree/examples/README
http://cgit.freedesktop.org/telepathy/telepathy-glib/tree/examples/README
http://telepathy.freedesktop.org/spec/
http://telepathy.freedesktop.org/doc/book/sect.basics.handles.html
http://telepathy.freedesktop.org/doc/book/
http://cgit.freedesktop.org/telepathy/telepathy-gabble/
http://cgit.freedesktop.org/telepathy/telepathy-rakia/
http://cgit.freedesktop.org/telepathy/telepathy-glib/

ples9 of its usage.105

It is strongly recommend to use Telepathy-GLib when implementing any new106

connection manager. The Telepathy-GLib service-side API is only available in107

C, but can also be access from other languages that can embed C, such as C++.108

This library is fully documented10.109

Looking inside the telepathy-rakia code110

To start, a small design document can be found at docs/design.txt in telepathy-111

rakia sources. However, some parts of it are outdated.112

Source files113

• src/telepathy-rakia.c: this is the starting point of telepathy-rakia as it114

instantiates its ConnectionManager.115

• src/sip-connection-manager.[ch]: defines the ConnectionManagerClass116

and requests the creation of a Protocol of type TpBaseProtocol.117

• src/protocol.[ch]: defines the RakiaProtocolC lass which creates the Tp-118

BaseProtocol object. The protocol is responsible for starting new Connec-119

tions. The request arrives via D-Bus and arrives here through Telepathy-120

GLib.121

• src/sip-connection.c: defines the RakiaConnectionClass which inherits122

from RakiaBaseConnectionClass. The latter inherits from TpBaseCon-123

nectionClass.124

• src/sip-connection-helpers.[ch]: helper routines used by RakiaConnection125

• src/sip-connection-private.h: private structures for RakiaConnection126

• src/write-mgr-file.c: utility to produce manager files127

• rakia/base-connection.[ch]: base class for RakiaConnectionClass. It imple-128

ments its parent, RakiaBaseConnectionClass129

• rakia/base-connection-sofia.[ch]: Implements a callback to handle events130

from the SIP stack.131

• rakia/text-manager.[ch]: defines RakiaTextManagerClass, to manage the132

RakiaTextChannel.133

• rakia/text-channel.[ch]: defines RakiaTextChannelClass. This is a Telepa-134

thy Channel.135

• rakia/media-manager.[ch]: defines RakiaMediaManagerClass. Handles136

the RakiaSipSession.137

9http://cgit.freedesktop.org/telepathy/telepathy-glib/tree/examples/README
10http://telepathy.freedesktop.org/doc/telepathy-glib/

5

http://telepathy.freedesktop.org/doc/telepathy-glib/
http://cgit.freedesktop.org/telepathy/telepathy-glib/tree/examples/README
http://telepathy.freedesktop.org/doc/telepathy-glib/

• rakia/sip-session.[ch]: defines RakiaSipSessionClass; it relates directly to138

the definition of Session in the SIP specifcation.139

• rakia/call-channel.[ch]: defines RakiaCallChannelClass. The object is cre-140

ated when an incoming calls arrives or an outgoing call is placed. A141

RakiaCallChannel belongs to one RakiaSipSession.142

• rakia/sip-media.[ch]: defines RakiaSipMediaClass. It is created immedi-143

ately after a RakiaCallChannel is created. Can represent audio or video144

content.145

• rakia/call-content.[ch]: defines RakiaCallContentClass. The object is cre-146

ated for each new medium added. It relates directly to the Content defini-147

tion in the Telepathy specification. It could be an audio or video Content,148

it is matched one-to-one with a RakiaSipMedia object.149

• rakia/call-stream.[ch]: defines the RakiaCallStreamClass. It could be an150

audio or video object. The object is created by RakiaCallContent.151

• rakia/codec-param-formats.[ch]: helper to setting codecs parameters.152

• rakia/connection-aliasing.[ch]: defines function for aliasing Connections.153

• rakia/debug.[ch]: debug helpers154

• rakia/event-target.[ch]: helper to listen for events for a NUA handle (see155

NUA definition in sofia-sip documentation).156

• rakia/handles.[ch]: helpers for Handles.157

• rakia/sofia-decls.h: some extra declaration158

• rakia/util.[ch]: utility functions.159

sofia-sip160

sofia-sip11 is a User-Agent library that implements the SIP protocol as described161

in IETF RFC 3261. It can be used for VoIP, IM, and many other real-time and162

person-to-person communication services. telepathy-rakia makes use of sofia-sip163

to implement SIP support into telepathy. sofia-sip has good documentation12164

on all concepts, events and APIs.165

Connection Manager and creating connections166

src/telepathy-rakia.c is the starting point of this Telepathy SIP service. Its167

main() function does some of the initial setup, including D-Bus and Logging and168

calls Telepathy-GLib’s tp_run_connection_manager() method. The callback169

passed to this method gets called and constructs a new Telepathy Connection-170

Manager GObject. The Connection Manager Factory is at src/sip-connection-171

manager.c.172

11http://sofia-sip.sourceforge.net/
12http://sofia-sip.sourceforge.net/refdocs/nua/

6

http://sofia-sip.sourceforge.net/
http://sofia-sip.sourceforge.net/refdocs/nua/
http://sofia-sip.sourceforge.net/
http://sofia-sip.sourceforge.net/refdocs/nua/

Once the Connection Manager Object construction is finalized, the creation of a173

SIP Protocol Object is triggered inside rakia_connection_manager_constructed()174

by calling rakia_protocol_new(). This function is defined in src/protocol.c.175

It creates a Protocol Object and adds the necessary infrastructure that a176

Connection Manager needs to manage the Protocol. In the Class Factory it177

is possible to see which methods are defined by this Class by looking at the178

TpBaseProtocolClass base_class var:179

base_class->get_parameters = get_parameters;180

base_class->new_connection = new_connection;181

base_class->normalize_contact = normalize_contact;182

base_class->identify_account = identify_account;183

base_class->get_interfaces = get_interfaces;184

base_class->get_connection_details = get_connection_details;185

base_class->dup_authentication_types = dup_authentication_types;186

Documentation on each method of this class can be found in the Telepathy-187

GLib documentation for TpBaseConnectionManager13 and TpBaseProto-188

col14. The Protocol is bound to ConnectionManager through the method189

tp_base_connection_manager_add_protocol() .190

The new_connection() method defined there is used to create a new Telepathy191

Connection when the NewConnection() method on org.freedesktop.Telepathy.ConnectionManager.rakia192

is called.193

The Telepathy Connection object is of type RakiaConnection, which inherits194

from RakiaBaseConnection, which in turn inherits from TpBaseConection. The195

methods used by RakiaConnection can be seen at the RakiaConnectionClass196

and RakiaBaseConnectionClass initializations. They are defined at src/sip-197

connection.c for the RakiaBaseConnecionClass:198

sip_class->create_handle = rakia_connection_create_nua_handle;199

sip_class->add_auth_handler =200

rakia_connection_add_auth_handler;201

and for the TpBaseConnectionClass:202

base_class->create_handle_repos = rakia_create_handle_repos;203

base_class->get_unique_connection_name = rakia_connection_unique_name;204

base_class->create_channel_managers = rakia_connection_create_channel_managers;205

base_class->create_channel_factories = NULL;206

base_class->disconnected = rakia_connection_disconnected;207

base_class->start_connecting = rakia_connection_start_connecting;208

base_class->shut_down = rakia_connection_shut_down;209

base_class->interfaces_always_present =210

interfaces_always_present;211

13http://telepathy.freedesktop.org/doc/telepathy-glib/TpBaseConnectionManager.html
14http://telepathy.freedesktop.org/doc/telepathy-glib/telepathy-glib-base-protocol.html

7

http://telepathy.freedesktop.org/doc/telepathy-glib/TpBaseConnectionManager.html
http://telepathy.freedesktop.org/doc/telepathy-glib/telepathy-glib-base-protocol.html
http://telepathy.freedesktop.org/doc/telepathy-glib/telepathy-glib-base-protocol.html
http://telepathy.freedesktop.org/doc/telepathy-glib/telepathy-glib-base-protocol.html
http://telepathy.freedesktop.org/doc/telepathy-glib/TpBaseConnectionManager.html
http://telepathy.freedesktop.org/doc/telepathy-glib/telepathy-glib-base-protocol.html

During the TpBaseConnection object construction the create_channel_managers212

method is called. A Channel is an entity provided by a Connection to allow the213

communication between the local ConnectionManager and the remote server214

providing the service. A Channel can represent an incoming or outgoing IM215

message, a file transfer, a video call, etc. Many Channels can exist at a given216

time.217

Channels and Calls218

telepathy-rakia has two types of Channels: Text and Call. For TextChan-219

nels a RakiaTextManager objects is created. It inherits from TpChannelMan-220

ager. TpChannelManager is a generic type used by all types of Channels.221

See rakia/text-manager.c for the RakiaTextManagerClass definitions. When222

constructed, in rakia_text_manager_constructed(), the object sets the con-223

nection_status_changed_cb callback to get notified about Connection status224

changes. If the Connection status changes to Connected, the callback is acti-225

vated and the code sets yet another callback, rakia_nua_i_message_cb. This226

callback is connected to nua-event from sofia-sip. This callback is responsible227

for managing an incoming message request from the remote server.228

The callback then handles the message it receives through the Connection using229

the sofia-sip library. At the end of the function the following code can be found:230

channel = rakia_text_manager_lookup_channel (fac, handle);231

if (!channel)232

channel = rakia_text_manager_new_channel (fac, handle, handle, NULL);233

rakia_text_channel_receive (channel, sip, handle, text, len);234

The RakiaTextManager tries to figure if an existing Channel for this message235

already exists, or if a new one needs to be created. Once the channel is236

found or created, RakiaTextManager is notified of the received message through237

rakia_text_channel_receive() which creates a TpMessage to wrap the received238

message.239

A similar process happens with the similar RakiaMediaManager which handles240

SIP Sessions and Call Channels. The callback registered by RakiaMediaMan-241

ager is rakia_nua_i_invite_cb(), in rakia/media-manager.c, it then can get242

notified of incoming invites to create a SIP Session. Once the callback is acti-243

vated, which means when an incoming request to create a SIP Session arrives,244

a new RakiaSipSession is created. Outgoing requests to create a SIP session245

RakiaSipSession are initiated on the telepathy-rakia side through the exposed246

D-Bus interface. The request comes from the TpChannelManager object and is247

created by rakia_media_manager_requestotron() in the end of its call chain:248

static void249

channel_manager_iface_init (gpointer g_iface, gpointer iface_data)250

{251

TpChannelManagerIface *iface = g_iface;252

8

iface->foreach_channel = rakia_media_manager_foreach_channel;253

iface->type_foreach_channel_class = rakia_media_manager_type_foreach_channel_class;254

iface->request_channel = rakia_media_manager_request_channel;255

iface->create_channel = rakia_media_manager_create_channel;256

iface->ensure_channel = rakia_media_manager_ensure_channel;257

}258

Here in channel_manager_iface_init(), telepathy-rakia sets which method it259

wants to be called when the D-Bus methods15 exposed by Telepathy-GLib are260

called. These functions handle Channel creation; however, they must first create261

a SIP Session before creating the Channel itself. The RakiaSipSession object262

will handle the Channels between the remote server and telepathy-rakia.263

In the incoming path besides of creating a new SIP session the rakia_nua_i_invite_cb264

callback also sets a new callback incoming_call_cb, that as it name says get265

called when a new call arrives.266

CallChannels, implemented as RakiaCallChannel in telepathy-rakia, are then267

created once this callback is activated or, for outgoing call channels requests,268

just after the RakiaSipSession is created. See the calls to new_call_channel()269

inside rakia/media-manager.c for more details.270

If RakiaCallChannel constructed was requested by the local user up two271

new media streams would be created and added to it; the media can be272

audio or video. The media streams, known as a RakiaSipMedia object, is273

either created by the CallChannel constructed method if InitialAudio16 or274

InitialVideo17 is passed or by a later call to AddContent() on the D-Bus275

interface org.freedesktop.Telepathy.Channel.Type.Call1.276

The creation of a Content object adds a “m=” line in the SDP in the SIP277

message body. Refer to the RFC 3261 specification.278

The last important concept is a CallStream, implemented here as RakiaCall-279

Stream. A CallStream represents either a video or an audio stream to one specific280

remote participant, and is created through rakia_call_content_add_stream()281

every time a new Content object is created. In telepathy-rakia each Content282

object only has only one Stream because only one-to-one calls are supported .283

Writing new Folks backends284

The Folks documentation18 on backends is fairly extensive and can help quite285

a lot when writing a new backend. Each backend should provide a subclass of286

Folks.Backend19.287

15http://telepathy.freedesktop.org/spec/Connection_Interface_Requests.html
16http://telepathy.freedesktop.org/spec/Channel_Type_Call.html#Property:InitialAudio
17http://telepathy.freedesktop.org/spec/Channel_Type_Call.html#Property:InitialVideo
18https://wiki.gnome.org/Folks
19http://telepathy.freedesktop.org/doc/folks/vala/Folks.Backend.html

9

http://telepathy.freedesktop.org/spec/Connection_Interface_Requests.html
http://telepathy.freedesktop.org/spec/Channel_Type_Call.html#Property:InitialAudio
http://telepathy.freedesktop.org/spec/Channel_Type_Call.html#Property:InitialVideo
https://wiki.gnome.org/Folks
http://telepathy.freedesktop.org/doc/folks/vala/Folks.Backend.html
http://telepathy.freedesktop.org/spec/Connection_Interface_Requests.html
http://telepathy.freedesktop.org/spec/Channel_Type_Call.html#Property:InitialAudio
http://telepathy.freedesktop.org/spec/Channel_Type_Call.html#Property:InitialVideo
https://wiki.gnome.org/Folks
http://telepathy.freedesktop.org/doc/folks/vala/Folks.Backend.html

The same documentation can be found in the sources in the file folks/backend.vala.288

The evolution-data-server (EDS) backend will be used as example here due it289

is extensive documentation. The EDS subclass for Folks.Backend is defined in290

backend/eds/eds-backend.vala in the sources.291

A backend also needs to implement the Folks.Persona20 and Folks.PersonaStore21292

subclassess. For EDS those are Edsf.Persona22 and Edsf.PersonaStore23, which293

can also be seen in the sources in backends/eds/lib/edsf-persona.vala and294

backends/eds/lib/edsf-persona-store.vala, respectively.295

Persona is the representation of a single contact in a given backend, they are296

stored by a PersonaStore. One backend may have many PersonaStores if they297

happen to have different sources of contacts. For instance, each EDS address298

book would have an associated PersonaStore to it. Personas from different299

Backends that represent the same physical person are aggregated together by300

Folks core as a Individual24.301

The Telepathy backend also serves as a good example. As the EDS backend, it302

is well-implemented and documented.303

20http://telepathy.freedesktop.org/doc/folks/vala/Folks.Persona.html
21http://telepathy.freedesktop.org/doc/folks/vala/Folks.PersonaStore.html
22http://telepathy.freedesktop.org/doc/folks-eds/vala/Edsf.Persona.html
23http://telepathy.freedesktop.org/doc/folks-eds/vala/Edsf.PersonaStore.html
24http://telepathy.freedesktop.org/doc/folks/vala/Folks.Individual.html

10

http://telepathy.freedesktop.org/doc/folks/vala/Folks.Persona.html
http://telepathy.freedesktop.org/doc/folks/vala/Folks.PersonaStore.html
http://telepathy.freedesktop.org/doc/folks-eds/vala/Edsf.Persona.html
http://telepathy.freedesktop.org/doc/folks-eds/vala/Edsf.PersonaStore.html
http://telepathy.freedesktop.org/doc/folks/vala/Folks.Individual.html
http://telepathy.freedesktop.org/doc/folks/vala/Folks.Persona.html
http://telepathy.freedesktop.org/doc/folks/vala/Folks.PersonaStore.html
http://telepathy.freedesktop.org/doc/folks-eds/vala/Edsf.Persona.html
http://telepathy.freedesktop.org/doc/folks-eds/vala/Edsf.PersonaStore.html
http://telepathy.freedesktop.org/doc/folks/vala/Folks.Individual.html

	Writing ConnMan plugins
	Customs ConnMan Session policies
	Management of ConnMan Sessions
	WiFi radio start up behavior on ConnMan
	Supporting new data modems in oFono
	Writing new Telepathy Connection Managers
	Looking inside the telepathy-rakia code

	Writing new Folks backends

