
Release flow and product lines

Contents1

Debian release processes 22

Process towards a release . 33

Process after release . 44

Stable repository . 45

Security repository . 46

Stable Proposed Updates repository 47

Stable Updates repository . 58

Backports repository . 59

Debian release flow conclusions . 510

Linux kernel release flow 611

Process towards a release . 612

Process after a release . 713

Linux release flow conclusions . 714

Apertis release flow 715

Flow up to a product release . 916

Development releases (Q4, Q1, Q2, Q3) 917

Preview release (Q4) . 1018

Product release (Q1) . 1019

Process after a product release . 1020

Stable Repository . 1121

Security repository . 1122

Updates repository . 1123

Backports repository . 1124

Example images . 1125

Apertis release flow conclusions . 1226

Release flow for the direct downstreams of Apertis 1327

Guidelines for product development on top of Apertis and its di-28

rect downstreams 1329

Pre-production guidelines . 1330

Post-production support guidelines . 1531

Product guideline conclusions . 1632

Appendix: Change in release strategy 1633

Appendix: Distribution “freshness” 1734

Apertis and its direct downstreams are intended as baseline distributions for35

further product development, as such it’s important to have a clear definition of36

what downstreams further down the chain can expect in terms of releases and37

support cycles in order to understand how to best use them in their product38

development cycles.39

2

The release cycles of Apertis and its direct downstreams are split up in two big40

phases: a development phase, containing various development releases followed41

by a product phase which contains various stable point releases. As it is typical,42

the development phase is where new features are introduced and prepared, with43

each development release having only a relatively short support time, while44

during the product phase the focus is on stability, which comes with a longer45

support cycle, no new feature and only updates for important bugfixes and46

security issues.47

This document sets out to define a well-defined process for both the development48

and production phases of Apertis and its direct downstreams, while ensuring the49

software taken from upstreams is recent and well-supported. More specifically50

this process is trying to balance various trade-offs when integrating from com-51

munity supported upstreams:52

• support baseline versions that also have community support (to prevent53

the situation where, for instance, Apertis would need to provide full secu-54

rity support for the base distribution and/or the Linux kernel);55

• ensure there is a reasonable window for users of Apertis and its direct56

downstreams to rebase on top of a new on version while the older baseline57

is still supported;58

• limit the amount of simultaniously supported releases to mimimize the59

overall effort.60

In all cases it should be noted that support timelines documented here are the61

expected default timelines: given enough interest particular support cycles can62

be extended to fit the needs of downstreams.63

For the Apertis releases there are two important upstream projects that need to64

be taken into account: the Debian project, which is the main upstream distri-65

bution for Apertis, and the mainline Linux kernel. These will be further looked66

at first, including the impact of their release process on generic downstreams67

before looking at Apertis specifically.68

Debian release processes69

Debian aims to do a new major release about every two years. These releases are70

not time-based, but done when “ready” (defined as having no more issues tagged71

“release-critical”). Even so, the process is well understood and predictable. For72

more information see the Debian release statistics173

For a downstream there are two important processes to understand. The first74

one to understand is the process towards a release which impacts when down-75

stream rebasing should start. The second one being the maintenance process76

of a stable release, which impacts how to handle security and bugfixes coming77

from Debian to the downstream.78

1https://wiki.debian.org/DebianReleases#Release_statistics

3

https://wiki.debian.org/DebianReleases#Release_statistics
https://wiki.debian.org/DebianReleases#Release_statistics

A new stable Debian release is done roughly every two years. Each release gets79

3 years of support before it is taken over by the LTS team which provides other80

two years of security support before a release enters end of life (EOL). The81

following diagram shows the expected timeline for the current Debian release82

and the upcoming releases:83

Freeze
start

Release LTS EOL

Debian 9
"Stretch"

Freeze
start

Release LTS EOL

Debian 10
"Buster"

Freeze
start

Release LTS

Debian 11
"Bullseye"

June
2017

~June
2019

~June
2021

Jan
2019

~Jan
2021

Jan.
2017

~June
2022

~June
2024

Freeze
start

Release

Debian 12
"Bookworm"

~June
2023

~Jan
202384

Process towards a release85

Debian’s development is done in a suite called unstable (code-named sid). De-86

velopers directly upload packages into this suite. Once updated, packages stay87

in the unstable suite for some time (typically 10 days) and then they automati-88

cally get promoted to the testing suite as long as no release-critical bugs were89

found (and no other sanity check failed). The testing suite has the code-name90

of the next planned Debian release, at the time of this writing this is buster.91

The idea behind the unstable to testing progression is to ensure that during92

Debian development there is a version available that is shielded from the most93

serious regressions and can thus be used by a wider audience for testing and94

dogfooding. However among Debian developers it is common to directly run95

unstable on a day to day basis.96

To go from the “normal” development to a new release a freeze process is used.97

Specifically the testing suite is frozen in various stages:98

• transition freeze: no updates that need a collection of packages to transi-99

tion into testing at once are allowed (e.g. due to ABI breakage);100

• soft freeze: no new packages are allowed into testing anymore;101

• full freeze: only updates for release critical issues are allowed.102

Typically this process takes around 7 months (plus/minus two months) to com-103

plete, with the transition freeze and soft freeze each taking about 1 month while104

the full freeze takes the remainder of the time. Even with the testing suite being105

held in a pretty stable state the final freeze takes this amount of time due to106

the sheer size of Debian, due to the big increase in user testing once the freeze107

begins and due to all the work that needs to be completed before release, such108

as finalising the documentation, installers, etc. The end-result is a new stable109

release of a very high-quality Linux distribution.110

4

Once a release is done the stable suite is updated to refer to the new release,111

while testing is changed to refer to the next version (to be code-named bullseye112

at the time of writing).113

From the perspective of a downstream distribution such as Apertis it is impor-114

tant to note that even if during the Debian freeze there will be some amount of115

outstanding release-critical bugs, only a subset of them will impact the down-116

streams use-case. As such, if scheduling allows, it is recommended to start117

rebasing on top of a next Debian stable release while Debian itself is in either118

soft or hard freeze. This has the added benefit that the downstream distribution119

will already pre-test the upcoming Debian release, with the potential of being120

able to fix high-priority issues in Debian proper even before its release, thus121

lowering the delta maintained in the downstream distribution.122

Process after release123

Once a release has been done, the newly released distribution will follow Debian’s124

stable processes. Debian tends to do point release once every two months to125

include fixes for the latest security issues and high priority bugs. This process126

is handled through various different package repositories.127

Stable repository128

This is the main repository with the full current released version of Debian.129

After release this repository only gets updated when a point releases happens.130

Security repository131

This repository contains security updates on top of the current point release.132

The security repositories are managed by the Debian Security team, using their133

own dedicated infrastructure.134

As can be expected, security updates are meant to be deployed by users as soon135

as possible.136

Stable Proposed Updates repository137

This repository is meant for proposed updates to the next point release. The138

purpose of this repository is to have a way of testing updates before they are139

included into the next point release.140

Only packages with issues tagged release-critical will be included in this repos-141

itory, including both bugfixes and security fixes. Do note that packages with142

security fixes are immediately published in the security repository for consump-143

tion by end-user and the inclusion in the proposed update repository is purely144

so that they can be included as part of the next point release.145

5

The set of packages that actually end up in the point release is manually re-146

viewed and selected by the Debian Stable Release maintainers, thus there is no147

guarantee that packages in this repository will be part of the next point release.148

Stable Updates repository149

The stable-updates repository exists for updates proposed to stable which are150

high urgency or time-sensitive and thus should be generally available to users151

before the next point release. Typical examples of packages landing here are152

updates to timezone data, virus scanners and high impact/low risk bugfixes.153

All packages here will also be available in proposed updates and are only allowed154

into this repository on a case-by-case basis.155

As with security updates this repository is meant to be used by all the users of156

a Debian stable release.157

Backports repository158

The backports repository contains packages taken from the next Debian release159

(specifically from the testing suite) and rebuilt against the current Debian stable160

release. Backports allow users to upgrade specific interesting packages to newer161

versions while keeping the remainder of their system running the stable release.162

However, while backports will have seen a minimal amount of testing, the pack-163

ages are provided on an as-is basis with no guarantee of stability. As such it’s164

recommended to only cherry-pick the package one needs from this repository.165

Debian release flow conclusions166

From a purely downstream perspectives there are various interesting aspects in167

this process.168

In the process going towards a release it’s notable that even during the soft and169

hard freeze periods Debian is already a quite stable baseline as such a rebasing170

process for an Apertis product release can start when Debian is in freeze as long171

as there is enough time left before the product release (around 8 to 9 months).172

After a Debian release there are clear repositories that a downstream should173

focus upon, namely those in the “stable updates” and “security” repositories, as174

well as updates included in point releases. The “stable proposed updates” can175

mostly be ignored on a day to day basis but gives interesting insights in what176

can be expected from the next point release. Finally the backports repository177

should in general not be used unless a downstream has a high interest in versions178

of a package newer than what is available in the stable release. However, in that179

case extra effort should be put in place to track security issues and other bugfixes180

for that package as Debian only provides it on a best-effort basis without the181

usual guarantees.182

6

Linux kernel release flow183

Apertis is following the Linux kernel LTS releases to ensure it includes modern184

features and support for recent hardware. As such it’s important to also look185

at the release flow of the Linux kernel itself and its impact. Linux sees a new186

major release about every 2 months, which typically is only supported until the187

next major release happens. However once a year there is a long-term support188

release which is supported for 2 years.189

The following diagram shows the expected timelines for the current and next190

expected Linux long term stable releases.191

Nov
2017

~Dec
2018

~Dec
2019

~Dec
2021

~Dec
2022

Linux
~4.25

Linux
~4.30

Linux
4.14

re
l

d
e
v

Linux
4.19

re
l

d
e
v

re
l

d
e
v

re
l

d
e
v

192

Process towards a release193

The kernel stabilisation process has two big phases: after every release there194

is a two week merge window in which all the various changes lined up by the195

various subsystem maintainers are pulled in the main tree. At the end of this196

two-week period the first release-candidate (rc1) is released and the merge win-197

dow is closed. Afterwards only patches fixing bugs and security issues will be198

integrated, with a new release candidate coming out every week.199

Typically 7 or 8 release candidates will be released in each cycle followed by a200

final release, which means a new stable version of Linux release every 9 to 10201

weeks.202

Process after a release203

After each Linux release further maintenance is done in the stable git tree. These204

trees will only get further bug and security fixes, with releases being done on205

an as-needed basis. The support time depends on the specific release which fall206

in two categories:207

• normal release, only supported until the next release;208

• long term release, typically supported for two years.209

Currently each last kernel release of the year is expected to be a long term210

release, supported for at least two years after release. Specific releases may211

7

be provided with longer upstream support depending on industry interest. For212

example the 4.4 kernel is getting a total of 6 years of support mainly due to213

interest from Android. Similarly the Linux 3.16 kernel is also getting a total of214

6 years of support as that was the kernel used by the Debian Jessie release. For215

Linux 4.9 a similar longer cycle is to be expected as that was used in Debian216

Stretch, however that hasn’t been made official thus far and at the time of this217

writing Linux 4.9 will go EOL in January 2019.218

Linux release flow conclusions219

For usage in Apertis product releases only long term releases are suitable. As220

there is a yearly LTS release of Linux with only a 2 year support cycle, it is221

recommended to ensure each yearly release of Apertis has the latest Linux LTS222

support. This ensures both support for recent hardware as well as having a223

reasonable security support window.224

If downstream projects require a longer support period for a specific kernel225

release then it’s recommended to align with other long term support efforts226

instead, depending on requirements.227

Apertis release flow228

The overall goal is for Apertis to do a yearly product release. These releases229

will be named after the year of the stable release, in other words the product230

release targetted at 2020 will be given major version 2020. A product release231

is intended to both be based on the most recent mainline kernel LTS release232

and the current Debian stable release. Since Debian releases roughly once every233

two years, that means that there will typically be two Apertis product releases234

based on a single Debian stable release. With Linux doing an LTS release on a235

yearly basis, each Apertis product release will be based on a different (and then236

current) Linux kernel release.237

To move to a yearly product release cycle the recommendation is to keep the238

current quarterly releases, but rather than treating all the releases equally as239

is today have releases with specific purposes depending on where in the yearly240

cycle the releases are for a specific product release.241

The final product release is planned to occur at the end of Q1 every year, both242

to avoid the impact of the major holiday periods (Christmas/new-year and243

european summer) as well as releasing close to the Linux kernel LTS release to244

maximize the use of its support cycle. Once a product release is published, it245

will continue to get updates for bug and security fixes, with a point release every246

quarter for the whole duration of the support period.247

The standard support period for Apertis is 7 quarters. In other words from the248

initial release at the end of Q1 until the end of the next year.249

The various types of releases per quarter (without point releases) would be:250

8

Quarter Release type Support
Q4 Release N-1 Preview Limited, until the Q1 product release
Q4 Release N Development Limited, until the Q1 development release
Q1 Release N-1 Product Full support, until 1.75 years after release
Q1 Release N Development Limited, until the Q2 development release
Q2 Release N Development Limited, until the Q3 development release
Q3 Release N Development Limited, until the Q4 development release
Q4 Release N Preview Limited, until the Q1 product release
Q4 Release N+1 Development Limited, until the Q1 development release
Q1 Release N Product Full support, until 1.75 years after release
Q1 Release N+1 Development Limited, until the Q2 development release

For each quarter the releases would be (with some examples):251

Quarter N-2 N-1 N N+1 v2020 v2021 v2022 v2023
Q4 .3 pre dev0 v2020.3 v2021.pre v2022.dev0
Q1 .4 .0 dev1 v2020.4 v2021.0 v2022.dev1
Q2 .5 .1 dev2 v2020.5 v2021.1 v2022.dev2
Q3 .6 .2 dev3 v2020.6 v2021.2 v2022.dev3
Q4 .7 .3 pre dev0 v2020.7 v2021.3 v2022.pre v2023.dev0
Q1 .4 .0 dev1 v2021.4 v2022.0 v2023.dev1
Q2 .5 .1 dev2 v2021.5 v2022.1 v2023.dev2
Q3 .6 .2 dev3 v2021.6 v2022.2 v2023.dev3

The following diagram shows how this would look for Apertis releases up to 2023:252

9

Debian 9

"Stretch"

Debian 10

"Buster"

Debian 11

"BullEye"

Release

- 2
3

.7

- 2
3

.6

- 2
3

.5

- 2
3

.4

- 2
3

.3

- 2
3

.2

- 2
3

.1

- 2
3

.0

- 2
3

p
re

v
ie

w

- 2
3

d
e
v
3

- 2
3

d
e
v
2

- 2
3

d
e
v
1

- 2
3

d
e
v
0

Apertis
2023

- 2
2

.7

- 2
2

.6

- 2
2

.5

- 2
2

.4

- 2
2

.3

- 2
2

.2

- 2
2

.1

- 2
2

.0

- 2
2

p
re

v
ie

w

- 2
2

d
e
v
3

- 2
2

d
e
v
2

- 2
2

d
e
v
1

- 2
2

d
e
v
0

Apertis
2022

- 2
0

.7

- 2
0

.6

- 2
0

.5

- 2
0

.4

- 2
0

.3

- 2
0

.2

- 2
0

.1

- 2
0

.0

- 2
0

p
re

v
ie

w

- 2
0

d
e
v
3

- 2
0

d
e
v
2

- 2
0

d
e
v
1

- 2
0

d
e
v
0

Apertis
2020

- 1
9

.7

- 1
9

.6

- 1
9

.5

- 1
9

.4

- 1
9

.3

- 1
9

.2

- 1
9

.1

- 1
9

.0

- 1
9

p
re

v
ie

w

- 1
9

d
e
v
3

- 1
9

d
e
v
2

- 1
9

d
e
v
1

- 1
9

d
e
v
0

Apertis
2019

Linux LTS

Linux LTS

- 2
1

.7

- 2
1

.6

- 2
1

.5

- 2
1

.4

- 2
1

.3

- 2
1

.2

- 2
1

.1

- 2
1

.0

- 2
1

p
re

v
ie

w

- 2
1

d
e
v
3

- 2
1

d
e
v
2

- 2
1

d
e
v
1

- 2
1

d
e
v
0

Apertis
2021

Linux LTS

Linux LTS

Linux LTS

2018 2019 2020 2021 2022 2023

Debian

Debian

Debian

EOL

EOLRelease

253

Further details about the various types of release will be given in the following254

sections.255

Flow up to a product release256

The main flow towards a quarterly release will remain the same as it now, which257

is documented on the Apertis Release schedule2 page. However, depending on258

the type of release the focus may differ.259

Development releases (Q4, Q1, Q2, Q3)260

For a development release, everything is allowed as the main focus is develop-261

ment. These can include bigger changes to the infrastructure as well as to the262

delivered software stack. At the end of every quarter there is an Apertis de-263

velopment release: this ensures that there can be ongoing development of the264

distribution even if the preperation for the next product release has entered a265

stabilisation phase.266

Rebasing on the upcoming stable version of Debian can only be done as part of267

a development release. The rebase can start in a quarter as soon as Debian hits268

the soft freeze stage.269

Development releases are versioned as development number, with numbering start-270

ing from 0. The version of the first development release for the 2020 product271

release would be Apertis 2020 development 0 or optionally shortened to v2020dev0.272

2https://jwd.pages.apertis.org/apertis-website/policies/releases/

10

https://jwd.pages.apertis.org/apertis-website/policies/releases/
https://jwd.pages.apertis.org/apertis-website/policies/releases/

Preview release (Q4)273

The goal of a preview release is to provide a preview of what will be the final274

product release for further testing and validation by downstreams. As such a275

preview release should achieve a high level of stability: this means that during a276

preview release cycle only non-disruptive software or infrastructure updates will277

be allowed. Similarly, new features can only be introduced if they pose a low278

risk on existing functionality and do not have an impact on the overall platform279

stability.280

During the preparation of a preview release extra focus should be given to281

bugfixing and testing.282

One important exception to the above considerations is to be made: preview283

releases should be released with the new Linux kernel LTS (either the final284

release or a release candidate) to ensure the product release will be done with285

the most recent LTS Linux kernel, maximising the overlap with the 2 year stable286

support period offered.287

As there is only one preview release for each product release, the version is the288

major product version followed by preview. For example Apertis 2020 preview,289

which can be shortened to v2020pre.290

Product release (Q1)291

As can be expected the focus of the product release quarter is to deliver a high-292

quality release which can be supported for a longer period. For this release only293

security fixes, bugfixes and updates to the stable kernel release or updates from294

the Debian stable release.295

New features should not be included during this quarter as it’s unlikely there296

will be enough time for them to fully mature.297

The major version of the product release is simply the year in which the release298

is to be done. The minor version starts at 0 and is increased for each later point299

release. This means the initial product release for 2020 would be Apertis 2020.0300

or simply shortened to v2020.0.301

Process after a product release302

After a release has been done, for each of them there is an expected support life303

depending on the type of release as outlined above.304

For non-product release any post-release updates will directly go into the main305

repository for that specific release. For product releases a setup similar to306

Debian is to be used to stage updates before a new point release is done. The307

repositories used by Apertis are outlined in the following sections.308

11

Stable Repository309

This is the main repository with the full released version. This repository only310

gets updated at point releases.311

Point release will be done every three months. All downstreams are expected312

to pull directly from the stable repository.313

Security repository314

For security issues a dedicated security repository is used. This repository is315

only used with updated packages including security fixes.316

This repository should be pulled directly by all downstreams and any updates317

rolled out at high priority. Updates from the Debian security repository will318

always be included in this repository.319

Updates repository320

This repository includes updated packages to be included in the next Apertis321

point release. Only packages with high priority bugfixes are allowed into this322

repository. Updated packages from the Debian stable-updates and point releases323

will be automatically included.324

Downstreams are recommended to include this repository but it’s not manda-325

tory.326

Backports repository327

This repository has backports of packages which are of special interest to down-328

streams but where not suitable for inclusion into the product release.329

Unless specific agreements have been made, the packages available in this repos-330

itory are for experimentation use only and are not supported as part of the331

produce release.332

Example images333

Apertis includes a big collection of packages which can be used in a variety334

of system use-cases. As it is impossible to test all combinations of packages,335

Apertis provides a set of example images for each type of system which has been336

validated by the Apertis project. While other use-cases can be supported there337

cannot be a strict guarantee that Apertis is fit for purpose for those as it hasn’t338

been validated in that situation.339

Furthermore, as these Apertis images are meant as examples for product use-340

case they can include demonstration quality software, which is not intended nor341

has been validated to form the basis of a product.342

12

To clarify what is expected to be supported for each Apertis product release343

documentation will be provided to explain what the scope of each example344

image is, which use-cases it validates and which part of the software stack are345

fully supported for product usage.346

A description of the expected release artifacts can be found on the images3 page.347

Apertis release flow conclusions348

The above sections outline a process for Apertis to both generate and support349

yearly product releases. They ensure that Apertis releases are always based on350

recent but mature upstream software. Each product release will include the351

very latest Linux LTS kernel as well as the current Debian stable release.352

What was intentionally not covered is how to manage forward looking devel-353

opment during the non-development cycles as this is separate from the release354

flow. However there is no real blocker for doing development not intended to355

be part of the product release, deliverables can be delivered for instance via the356

backports repository or by other means to be defined further.357

Combining all the various types of releases, for a single product release 13 dif-358

ferent releases will be done. For example for Apertis 2021 the schedule looks359

like this:360

Quarter Release Name Type
2019Q4 Apertis 2021 development 0 v2021dev0 development
2020Q1 Apertis 2021 development 1 v2021dev1 development
2020Q2 Apertis 2021 development 2 v2021dev2 development
2020Q3 Apertis 2021 development 3 v2021dev3 development
2020Q4 Apertis 2021 preview v2021pre preview
2021Q1 Apertis 2021.0 v2021.0 stable release
2021Q2 Apertis 2021.1 v2021.1 stable point release
2021Q3 Apertis 2021.2 v2021.2 stable point release
2021Q4 Apertis 2021.3 v2021.3 stable point release
2022Q1 Apertis 2021.4 v2021.4 stable point release
2022Q2 Apertis 2021.5 v2021.5 stable point release
2022Q3 Apertis 2021.6 v2021.6 stable point release
2022Q4 Apertis 2021.7 v2021.7 stable point release

For projects using Apertis (or its direct downstreams) given this schedule there361

is a rebase window of a year to move to the newer version. Starting from when362

the preview release of the new version is done (for instance, v2022pre in 2021Q4)363

until the .7 stable point release of the old version (for instance, v2021.7), which364

is end of Q4 to end of the next Q4.365

3https://jwd.pages.apertis.org/apertis-website/policies/images/

13

https://jwd.pages.apertis.org/apertis-website/policies/images/
https://jwd.pages.apertis.org/apertis-website/policies/images/

Release flow for the direct downstreams of Aper-366

tis367

The release cycle of the direct downstreams of Apertis is expected to follow the368

same process as that of Apertis. In other words throughout the year the direct369

downstreams of will do two development releases based on top of the Apertis370

development release, one preview release and a final product release.371

It is expected that the respective direct downstream releases will be done within372

a month from the quarterly Apertis release and will be made available to the373

downstreams further down the chain in that time frame.374

For an direct downstream product release it is expected that in addition to375

the stable repository the updates and especially security repository are tracked376

closely, with any updates from Apertis being made available in the direct down-377

stream within a week. A similar time-frame is expected for Apertis point re-378

leases.379

Guidelines for product development on top of380

Apertis and its direct downstreams381

To make the best use of Apertis in product development it is recommended to382

take the release timelines of Apertis and its direct downstreams into account383

when creating a product release roadmap. Since Apertis and its direct down-384

streams have a cadence of a new release once a year, users are driven to the same385

cadence by default. Given that the overlap of stable releases for two subsequent386

product releases is three quarters, users have a full year to rebase their work387

once the preview release for the next product release is published.388

The details about the use of Apertis and its direct downstreams will depend389

on the phase of the project, in particular whether it is in the pre-production390

development phase or in the post-production support phase.391

Pre-production guidelines392

The pre-production phase is the phase before a new major version of software393

goes into production. This can either before the product starts its production394

or when a new major software update is planned to be rolled out to products395

already in the field.396

Typically this phase consists of a period of heavy development (potentially in-397

terleaved with short stabilisation periods), followed by a potentially longer final398

stabilisation period before entering production.399

For the final stabilisation phase, the baseline used for Apertis and its direct400

downstreams should be focused on stability. This means either a preview or the401

current product release should be used. Care should be taken to ensure that402

14

there is still a reasonable window of support for the baseline distribution when403

production is planned to start. After production has started the guidelines for404

post-production support should be taken into account.405

For the initial development phase there are two main options:406

• follow the development releases of Apertis or its direct downstreams;407

• follow the product releases of Apertis or its direct downstreams (switching408

at the preview stage).409

The first option allows the product development to use the very latest Apertis410

features and developments on top of the most recent software baseline which411

will form the basis of the future product release of Apertis or of its direct down-412

stream, while the second option provides a more stable, but older, baseline al-413

lowing the product team to focus on their own software stack. These approaches414

can be mixed, for example by starting out early product developement on the415

current Apertis (or one of its direct downstreams) development release to take416

advantage of more recent features, but following that baseline when it becomes417

the product release instead of moving to the next cycle of development releases.418

By mixing the approaches in this way the product team has the flexibility of419

choosing the baseline that best fits their priorities at any given time.420

The following diagram shows an example of such a mixed development: devel-421

opment starts on top of the then current Apertis development release and is422

rebased early onto the next development versions of Apertis such that the prod-423

ucts final 9 month freeze before SOP coincides with the product-line release424

of the Apertis it’s based on. If a product is based on a direct downstream of425

Apertis, then the chart would be nearly identical, replacing the Apertis labels426

with the name of the direct downstream.427
2

1
d
e
v
0

2
1

d
e
v
1

2
1

d
e
v
2

2
1

d
e
v
3

2
1

p
re

2
1

.0

2
1

.1

2
1

.2

2
1

.3

2
1

.4

2
1

.5

2
1

.6

Apertis
2021

'21Q1

'21Q2

'21Q3

'21Q4

'20Q1

'20Q2

'20Q3

'20Q4

'22Q1

'22Q2

'22Q3

'19Q4

2
2

d
e
v
0

2
2

d
e
v
1

2
2

d
e
v
2

2
2

d
e
v
3

2
2

p
re

2
2

.0

2
2

.1

2
2

.2

2
2

.3

2
2

.4

2
2

.5

2
2

.6

Apertis
2022

'22Q4

'22Q1

'22Q4

'22Q3

'22Q2

PreProduction

so
p

Final Freeze

Development

Development

428

15

Post-production support guidelines429

The post production support phase is the phase where the product is out in the430

market and any software updates are primarily done for the purpose of fixing431

bug and security issues.432

In this phase it’s assumed that the release into the field has been done based on433

a product release of Apertis or of one of its direct downstreams. The product434

team is expected to track Apertis security fixes as they become available through435

the security repository of Apertis or its direct downstream as well as new point436

releases (containing both security and bug fixes).437

It is up to the product team to further select and test these updates for their438

product and schedule software updates that work best for their schedule, with439

the recommendation to update devices in the field as quickly as possible espe-440

cially in the case of high impact security fixes.441

When a new release of Apertis or of its direct downstream comes out the prod-442

uct team is expected to update to this new version before the support for the443

previous Apertis release comes to an end. It is typically recommended to start444

the work to rebase on the new version of Apertis or of its direct downstream445

when the preview release becomes available as the focus for Apertis is very much446

on stability at that point.447

The following diagram shows an example of such a flow, where the product448

begins the preparation for deploying an update based on the new Apertis version449

at the time of the preview release and targets deployment in the field when the450

old Apertis release support ends, which gives a window of a full year to do the451

necessary preparation and validation before deploying an update into the field.452

If a product is based on a direct downstream of Apertis, then the chart would453

be nearly identical, replacing the Apertis labels with the name of the direct454

downstream.455

16

'21Q1

'21Q2

'21Q3

'21Q4

'20Q1

'20Q2

'20Q3

'20Q4

'22Q1

'22Q2

'22Q3

'19Q4 '22Q4

'23Q1

'23Q4

'23Q3

'23Q2

2
2
d
e
v
0

2
2
d
e
v
1

2
2
d
e
v
2

2
2
d
e
v
3

2
2
p
re

2
2
.0

2
2
.1

2
2
.2

2
2
.3

2
2
.4

2
2
.5

2
2
.6

Apertis
2022

2
1
d
e
v
0

2
1
d
e
v
1

2
1
d
e
v
2

2
1
d
e
v
3

2
1
p
re

2
1
.0

2
1
.1

2
1
.2

2
1
.3

2
1
.4

2
1
.5

2
1
.6

Apertis
2021

2
3
d
e
v
0

2
3
d
e
v
1

2
3
d
e
v
2

2
3
d
e
v
3

2
3
p
re

2
3
.0

2
3
.1

2
3
.2

Apertis
2023

2
3
.3

e
o
l

preparation deployment

preparation deployment

e
o
l

preparation deployment
Product

Product

Product

2
1
.7

2
2
.7

456

Product guideline conclusions457

As can be seen in the previous sections Apertis and its direct downstreams try458

to give product teams flexibility to use Apertis as they see fit for their needs459

within the constraints imposed by the support timelines.460

It should be noted however that these timelines are not set in stone: if there are461

business cases for having specific releases of Apertis or of its direct downstreams462

supported for an extended period then this is in principle possible. However it463

should be noted that Apertis and its direct downstreams in turn have constraints464

from its upstreams to be able to rely on community support, which may limit465

the amount of support that can be provided.466

Appendix: Change in release strategy467

This release flow concept is a departure from the initial concept for Apertis,468

which would rebase on every new Ubuntu releases (once every 6 months). This469

resulted in two releases for every Ubuntu version, where in one quarter the470

project would rebase on the new Ubuntu release, and in the following quarter471

it would continue on that baseline with further updates and improvements.472

Conceptually there are two big changes with this new concept:473

• switch to a longer supported distribution release;474

• switch from Ubuntu as a baseline to Debian.475

When the initial concept was set out, Ubuntu would support non-LTS releases476

17

for 18 month (one year after the next Ubuntu release). Currently however477

the support for non-TLS releases is only 9 months (3 months after the next478

Ubuntu) release), which is simply too short for supporting product usage even479

if the product has a very aggressive timeline.480

This means that to fit the trade-offs/constraints mentioned in the introduction481

a switch has to be made to releases with a longer support term, which in both482

Ubuntu and Debian cases are released every 2 years, with 5 years of support.483

The rationale for switching from Ubuntu as a baseline to Debian has been out-484

lined in more detailed in the “The case for moving to Debian stretch or Ubuntu485

18.04”4 concept document.486

Appendix: Distribution “freshness”487

A side-effect of the switch to distributions with a longer support cycle is that488

there are fewer updates on top of the baseline. As such the software available489

in the distribution can be older than the latest and greatest from upstream or490

more recent distribution releases (for instance, older than what it is available491

in normal Ubuntu releases), which also means that not all the latest features492

might be available.493

This is a consequence from the trade-offs that are being made in the release494

process to best serve users of Apertis and its direct downstreams, stability and495

community support are preferred over having the very latests features. In case496

newer features are required this can either be handled via the backports mech-497

anism if only needed for specific users or, in case of a feature useful to most498

users, including a newer version in the next release of Apertis or of its direct499

downstreams can be considered.500

A practical example of this happening is the way the Linux kernel is handled, as501

support for recent hardware devices is considered important for a wide variety502

of users (especially during the early product phases). However this does mean503

a reduced community kernel support timeline when compared to a distribution504

kernel, so in situations where an update is considered, care should be taken to505

evaluate the trade-offs with respect to effort costs.506

Overall, with this release flow the latency for new updates to components from507

a newer distribution is at most two years. This is under the assumption that508

users looking for newer features are still in early development and are using the509

preview releases of Apertis or of its direct downstreams and at that stage not510

yet the product release. Generally this is seen as a reasonable trade-off for most511

components.512

4https://jwd.pages.apertis.org/apertis-website/architecture/case-for-moving-to-debian/

18

https://jwd.pages.apertis.org/apertis-website/architecture/case-for-moving-to-debian/
https://jwd.pages.apertis.org/apertis-website/architecture/case-for-moving-to-debian/
https://jwd.pages.apertis.org/apertis-website/architecture/case-for-moving-to-debian/
https://jwd.pages.apertis.org/apertis-website/architecture/case-for-moving-to-debian/

	Debian release processes
	Process towards a release
	Process after release
	Stable repository
	Security repository
	Stable Proposed Updates repository
	Stable Updates repository
	Backports repository

	Debian release flow conclusions

	Linux kernel release flow
	Process towards a release
	Process after a release
	Linux release flow conclusions

	Apertis release flow
	Flow up to a product release
	Development releases (Q4, Q1, Q2, Q3)
	Preview release (Q4)
	Product release (Q1)

	Process after a product release
	Stable Repository
	Security repository
	Updates repository
	Backports repository

	Example images
	Apertis release flow conclusions

	Release flow for the direct downstreams of Apertis
	Guidelines for product development on top of Apertis and its direct downstreams
	Pre-production guidelines
	Post-production support guidelines
	Product guideline conclusions

	Appendix: Change in release strategy
	Appendix: Distribution ``freshness''

